首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   4篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   8篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1989年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
21.

Background

The interaction between insects and plants takes myriad forms in the generation of spectacular diversity. In this association a species host range is fundamental and often measured using an estimate of phylogenetic concordance between species. Pollinating fig wasps display extreme host species specificity, but the intraspecific variation in empirical accounts of host affiliation has previously been underestimated. In this investigation, lineage delimitation and codiversification tests are used to generate and discuss hypotheses elucidating on pollinating fig wasp associations with Ficus.

Results

Statistical parsimony and AMOVA revealed deep divergences at the COI locus within several pollinating fig wasp species that persist on the same host Ficus species. Changes in branching patterns estimated using the generalized mixed Yule coalescent test indicated lineage duplication on the same Ficus species. Conversely, Elisabethiella and Alfonsiella fig wasp species are able to reproduce on multiple, but closely related host fig species. Tree reconciliation tests indicate significant codiversification as well as significant incongruence between fig wasp and Ficus phylogenies.

Conclusions

The findings demonstrate more relaxed pollinating fig wasp host specificity than previously appreciated. Evolutionarily conservative host associations have been tempered by horizontal transfer and lineage duplication among closely related Ficus species. Independent and asynchronistic diversification of pollinating fig wasps is best explained by a combination of both sympatric and allopatric models of speciation. Pollinator host preference constraints permit reproduction on closely related Ficus species, but uncertainty of the frequency and duration of these associations requires better resolution.  相似文献   
22.
23.
Abscisic acid (ABA) is one of the plant hormones involved in the interaction between plants and pathogens. In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants. Exogenous application of ABA restored susceptibility to B. cinerea in sitiens plants and increased susceptibility in WT plants. These results indicate that ABA plays a major role in the susceptibility of tomato to B. cinerea. ABA appeared to interact with a functional plant defense response against B. cinerea. Experiments with transgenic NahG tomato plants and benzo(1,2,3)thiadiazole-7-carbothioic acid demonstrated the importance of salicylic acid in the tomato-B. cinerea interaction. In addition, upon infection with B. cinerea, sitiens plants showed a clear increase in phenylalanine ammonia lyase activity, which was not observed in infected WT plants, indicating that the ABA levels in healthy WT tomato plants partly repress phenylalanine ammonia lyase activity. In addition, sitiens plants became more sensitive to benzo(1,2,3)thiadiazole-7-carbothioic acid root treatment. The threshold values for PR1a gene expression declined with a factor 10 to 100 in sitiens compared with WT plants. Thus, ABA appears to negatively modulate the salicylic acid-dependent defense pathway in tomato, which may be one of the mechanisms by which ABA levels determine susceptibility to B. cinerea.  相似文献   
24.
25.
In plants, the developmental mechanisms that regulate the positioning of lateral organs along the primary root are currently unknown. We present evidence on how lateral root initiation is controlled in a spatiotemporal manner in the model plant Arabidopsis thaliana. First, lateral roots are spaced along the main axis in a regular left-right alternating pattern that correlates with gravity-induced waving and depends on AUX1, an auxin influx carrier essential for gravitropic response. Second, we found evidence that the priming of pericycle cells for lateral root initiation might take place in the basal meristem, correlating with elevated auxin sensitivity in this part of the root. This local auxin responsiveness oscillates with peaks of expression at regular intervals of 15 hours. Each peak in the auxin-reporter maximum correlates with the formation of a consecutive lateral root. Third, auxin signaling in the basal meristem triggers pericycle cells for lateral root initiation prior to the action of INDOLE-3-ACETIC ACID14 (SOLITARY ROOT).  相似文献   
26.
27.
To gain insights into the working mechanism of morphine, regional cerebral blood flow (rCBF) patterns after morphine administration were assessed in dogs. In a randomized cross-over experimental study, rCBF was estimated with 99mTc-Ethylcysteinate Dimer single photon emission computed tomography in 8 dogs at baseline, at 30 minutes and at 120 minutes after a single bolus of morphine. Perfusion indices (PI) in the frontal, parietal, temporal and occipital cortex and in the subcortical and cerebellar region were calculated. PI was significantly decreased 30 min after morphine compared to baseline in the right frontal cortex. The left parietal cortex and subcortical region showed a significantly increased PI 30 min after morphine compared to baseline. No significant differences were noted for the other regions or at other time points. In conclusion, a single bolus of morphine generated a changing rCBF pattern at different time points.  相似文献   
28.
29.
The plant hormone abscisic acid (ABA) is involved in a wide variety of plant processes, including the initiation of stress-adaptive responses to various environmental cues. Recently, ABA also emerged as a central factor in the regulation and integration of plant immune responses, although little is known about the underlying mechanisms. Aiming to advance our understanding of ABA-modulated disease resistance, we have analyzed the impact, dynamics and interrelationship of ABA and the classic defense hormone salicylic acid (SA) during progression of rice infection by the leaf blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Consistent with ABA negatively regulating resistance to Xoo, we found that exogenously administered ABA renders rice hypersusceptible to infection, whereas chemical and genetic disruption of ABA biosynthesis and signaling, respectively, led to enhanced Xoo resistance. In addition, we found successful Xoo infection to be associated with extensive reprogramming of ABA biosynthesis and response genes, suggesting that ABA functions as a virulence factor for Xoo. Interestingly, several lines of evidence indicate that this immune-suppressive effect of ABA is due at least in part to suppression of SA-mediated defenses that normally serve to limit pathogen growth. Resistance induced by the ABA biosynthesis inhibitor fluridone, however, appears to operate in a SA-independent manner and is likely due to induction of non-specific physiological stress. Collectively, our findings favor a scenario whereby virulent Xoo hijacks the rice ABA machinery to cause disease and highlight the importance of ABA and its crosstalk with SA in shaping the outcome of rice-Xoo interactions.  相似文献   
30.
The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号