首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   34篇
  国内免费   1篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   13篇
  2020年   3篇
  2019年   9篇
  2018年   16篇
  2017年   11篇
  2016年   17篇
  2015年   21篇
  2014年   30篇
  2013年   26篇
  2012年   41篇
  2011年   38篇
  2010年   21篇
  2009年   16篇
  2008年   30篇
  2007年   27篇
  2006年   22篇
  2005年   18篇
  2004年   16篇
  2003年   14篇
  2002年   12篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有418条查询结果,搜索用时 15 毫秒
131.
Tumor angiogenesis and immune response have in common to be cell recognition mechanisms, which are based on specific adhesion molecules and dependent on nitric oxide (NO). The aim of the present study is to deepen the mechanisms of angiogenesis and inflammation regulation by NO to find out the molecular regulation processes that govern endothelial cell permeability and leukocyte transmigration.Effects of NO, either exogenous or produced in hypoxic conditions, were studied on microvascular endothelial cells from skin and lymph node because of their strong involvement in melanoma progression. We found that NO down-regulation of pseudo-vessel formation was linked to a decrease in endothelial cell ability to adhere to each other which can be explain, in part, by the inhibition of PECAM-1/CD31 expression. On the other hand, NO was shown to be able to decrease leukocyte adhesion on an endothelial monolayer, performed either in static or in rolling conditions, and to modulate differentially CD34, ICAM-1/CD54, ICAM-2/CD102 and VCAM-1/CD106 expression.In conclusion, during angiogenesis and leukocyte recruitment, NO regulates cell interactions by controlling adhesion molecule expression and subsequently cell adhesion. Moreover, each endothelial cell type presents its own organospecific response to NO, reflecting the functions of the tissue they originate from.  相似文献   
132.

Background

Congenital esophageal stenosis (CES) is a rare condition frequently associated with esophageal atresia (EA). There are limited data from small series about the presentation, treatment, and outcomes of CES.

Methods

Medical records of all patients with CES included in the French Network on Esophageal Malformations and Congenital Diseases were reviewed retrospectively with regard to diagnosis, treatment, and outcome.

Results

Over 18 years, 61 patients (30 boys) had CES, and 29 (47%) of these patients also had EA. The mean age at diagnosis was 24 months (1 day to 14 years) and was younger in patients with CES and EA than in those with isolated CES (7 vs. 126 months, p?<?0.05). Twenty-one of the 61 patients with CES had no clinical symptoms: in three patients, the findings were incidental, and in 18 of the 29 patients with associated EA, CES was diagnosed at the time of surgical repair of EA or during a postoperative systematic esophageal barium study. In the 40 other patients, at diagnosis, 50% presented with dysphasia, 40% with vomiting, 50% with food impaction, and 42% with respiratory symptoms. Diagnosis of CES was confirmed by esophageal barium study (56/61) and/or esophageal endoscopy (50/61). Sixteen patients had tracheobronchial remnants (TBR), 40 had fibromuscular stenosis (FMS), and five had membrane stenosis (MS). Thirty-four patients (56%) were treated by dilation only (13/34 remained asymptomatic at follow-up); 15 patients were treated by dilation but required later surgery because of failure (4/15 remained asymptomatic at follow-up); and nine patients had a primary surgical intervention (4/9 were asymptomatic at follow-up). Dilation was complicated by esophageal perforation in two patients (3.4%). At follow-up, dysphagia remained in 36% (21/58) of patients, but the incidence did not differ between the EA and the isolated CS groups (10/29 vs. 7/32, p?=?0.27).

Conclusions

CS diagnosis can be delayed when associated with EA. Dilation may be effective for treating patients with FMS and MS, but surgical repair is often required for those with TBR. Our results show clearly that, regardless of the therapeutic option, dysphagia occurs frequently, and patients with CES should be followed over the long term.
  相似文献   
133.
The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many π-π interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption.  相似文献   
134.
135.
Through their ion-pumping and non-ion-pumping functions, Na(+)-K(+)-ATPase protein complexes at the plasma membrane are critical to intracellular homeostasis and to the physiological and pharmacological actions of cardiotonic steroids. Alteration of the abundance of Na(+)-K(+)-ATPase units at the cell surface is one of the mechanisms for Na(+)-K(+)-ATPase regulation in health and diseases that has been closely examined over the past few decades. We here summarize these findings, with emphasis on studies that explicitly tested the involvement of defined regions or residues on the Na(+)-K(+)-ATPase α1 polypeptide. We also report new findings on the effect of manipulating Na(+)-K(+)-ATPase membrane abundance by targeting one of these defined regions: a dileucine motif of the form [D/E]XXXL[L/I]. In this study, opossum kidney cells stably expressing rat α1 Na(+)-K(+)-ATPase or a mutant where the motif was disrupted (α1-L499V) were exposed to 30 min of substrate/coverslip-induced-ischemia followed by reperfusion (I-R). Biotinylation studies suggested that I-R itself acted as an inducer of Na(+)-K(+)-ATPase internalization and that surface expression of the mutant was higher than the native Na(+)-K(+)-ATPase before and after ischemia. Annexin V/propidium iodide staining and lactate dehydrogenase release suggested that I-R injury was reduced in α1-L499V-expressing cells compared with α1-expressing cells. Hence, modulation of Na(+)-K(+)-ATPase cell surface abundance through structural determinants on the α-subunit is an important mechanism of regulation of cellular Na(+)-K(+)-ATPase in various physiological and pathophysiological conditions, with a significant impact on cell survival in face of an ischemic stress.  相似文献   
136.
137.
N-glycosylation, a major co- and post-translational event in the synthesis of proteins in eukaryotes, is unknown in aquatic photosynthetic microalgae. In this paper, we describe the N-glycosylation pathway in the diatom Phaeodactylum tricornutum. Bio-informatic analysis of its genome revealed the presence of a complete set of sequences potentially encoding for proteins involved in the synthesis of the lipid-linked Glc(3)Man(9)GlcNAc(2)-PP-dolichol N-glycan, some subunits of the oligosaccharyltransferase complex, as well as endoplasmic reticulum glucosidases and chaperones required for protein quality control and, finally, the α-mannosidase I involved in the trimming of the N-glycan precursor into Man-5 N-glycan. Moreover, one N-acetylglucosaminyltransferase I, a Golgi glycosyltransferase that initiates the synthesis of complex type N-glycans, was predicted in the P. tricornutum genome. We demonstrated that this gene encodes for an active N-acetylglucosaminyltransferase I, which is able to restore complex type N-glycans maturation in the Chinese hamster ovary Lec1 mutant, defective in its endogeneous N-acetylglucosaminyltransferase I. Consistent with these data, the structural analyses of N-linked glycans demonstrated that P. tricornutum proteins carry mainly high mannose type N-glycans ranging from Man-5 to Man-9. Although representing a minor glycan population, paucimannose N-glycans were also detected, suggesting the occurrence of an N-acetylglucosaminyltransferase I-dependent maturation of N-glycans in this diatom.  相似文献   
138.
139.
IL-12 is essential for invariant NKT (iNKT) cells because it can maintain a functionally active population and promote a cytokine profile that is assumed to be mainly of the pro-Th1 type. We used the murine concanavalin A (Con A)-induced hepatitis model, in which iNKT cells, IL-12, IL-4, and IFN-gamma are equally requisite, to reevaluate this issue. We demonstrate that IL-12 interacts directly with iNKT cells, contributes to their recruitment to the liver, and enhances their IL-4 production, which is essential for disease onset. IL-12-deficient mice were less susceptible to experimental hepatitis and their iNKT cells produced less IL-4 than their wild-type counterpart. A normal response could be restored by IL-12 injection, revealing its importance as endogenous mediator. In accordance with this observation, we found that iNKT cells expressed the IL-12R constitutively, in contrast to conventional T cells. Furthermore, the physiological relevance of our data is supported by the lower susceptibility to disease induction of NOD mice, known for their inherent functional and numerical abnormalities of iNKT cells associated with decreased iNKT cell-derived IL-4 production and low IL-12 secretion. Taken together, our findings provide the first evidence that IL-12 can enhance the immune response through increased IL-4 production by iNKT cells, underscoring once more the functional plasticity of this subset.  相似文献   
140.
Human peroxiredoxin 5 (PRDX5) catalyzes different peroxides reduction by enzymatic substitution mechanisms. Enzyme oxidation caused an increase in Trp84 fluorescence, allowing performing pre-steady state kinetic measurements. The technique was validated by comparing with data available from the literature or obtained herein by alternative approaches. PRDX5 reacted with organic hydroperoxides with rate constants in the 106-107 M−1 s−1 range, similar to peroxynitrite-mediated PRDX5 oxidation, whereas its reaction with hydrogen peroxide was slower (105 M−1 s−1). The method allowed determining the kinetics of intramolecular disulfide formation as well as thioredoxin 2-mediated reduction. The reactivities of PRDXs with peroxides were surprisingly high considering thiol pKa, indicating that other protein determinants are involved in PRDXs specialization. The order of reactivities between PRDX5 towards oxidizing substrates differ from other PRDXs studied, pointing to a selective action of PRDXs with respect to peroxide detoxification, helping to rationalize the multiple enzyme isoforms present even in the same cellular compartment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号