首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   34篇
  国内免费   1篇
  2024年   1篇
  2022年   3篇
  2021年   13篇
  2020年   3篇
  2019年   9篇
  2018年   16篇
  2017年   11篇
  2016年   17篇
  2015年   21篇
  2014年   30篇
  2013年   27篇
  2012年   42篇
  2011年   38篇
  2010年   21篇
  2009年   16篇
  2008年   31篇
  2007年   27篇
  2006年   22篇
  2005年   18篇
  2004年   16篇
  2003年   14篇
  2002年   12篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1992年   1篇
  1990年   5篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
71.
Most eukaryotic proteins destined for imminent destruction are first tagged with a chain of ubiquitin molecules and are subsequently dismantled by the proteasome. Ubiquitin-independent degradation of substrates by the proteasome, however, also occurs. The number of documented proteasome-dependent, ubiquitin-independent degradation events remains relatively small but continues to grow. Proteins involved in oncogenesis and tumor suppression make up the majority of the known cases for this type of protein destruction. Provocatively, viruses with confirmed or suspected oncogenic properties are also prominent participants in the pantheon of ubiquitin-independent proteasomal degradation events. In this review, we identify and describe examples of proteasome-dependent, ubiquitin-independent protein degradation that occur during tumor virus infections, speculate why this type of protein destruction may be preferred during oncogenesis, and argue that this uncommon type of protein turnover represents a prime target for antiviral and anticancer therapeutics.  相似文献   
72.
73.
Marine benthic Foraminifera are abundant and thus represent a potential food source for fish. Previous studies of Foraminifera in fish diets have examined only small samples, with significant input reported only for a single surface-feeding species of fish. The present study is the first based on a significant sample (247 fish belonging to 83 species, 291 species of Foraminifera identified from more than 20,000 specimens examined). It provides new information on the contribution of Foraminifera to fish diets, and on the impact of fish predation on Foraminifera. The planktonic Tretomphalus phases, selectively ingested by Pomacentrus amboinensis, were the only significant nutritional input from Foraminifera. Herbivorous fish accidentally ingested living epiphytic Foraminifera, which were still living after digestion, and were defecated, with a significant effect on their dispersion. Carnivorous fish ingested a small number of tests, which were generally altered by the acidic phase of digestion and had no impact on foraminiferal assemblages. Sediment feeders ingested large quantities of empty tests that were released elsewhere, suggesting a possible bias in paleontological interpretations by mixing the thanatocoenoses. Observations on gut contents showed that the fish sometimes fed on a wide range of food, changing with food availability and individual preferences of fish.  相似文献   
74.
75.
MAP kinases of the ERK family play important roles in oocyte maturation, fertilization, and early embryo development. The role of the signaling pathway involving ERK5 MAP kinase during meiotic and mitotic M-phase of the cell cycle is not well known. Here, we studied the localization of the phosphorylated, and thus potentially activated, form of ERK5 in mouse maturing oocytes and mitotically dividing early embryos. We show that phosphorylation/dephosphorylation, i.e. likely activation/inactivation of ERK5, correlates with M-phase progression. Phosphorylated form of ERK5 accumulates in division spindle of both meiotic and mitotic cells, and precisely co-localizes with spindle microtubules at metaphase. This localization changes drastically in the anaphase, when phospho-ERK5 completely disappears from microtubules and transits to the cytoplasmic granular, vesicle-like structures. In telophase oocytes it becomes incorporated into the midbody. Dynamic changes in the localization of phospho-ERK5 suggests that it may play an important role both in meiotic and mitotic division.  相似文献   
76.
ATP-dependent and independent functions of Rad54 in genome maintenance   总被引:1,自引:0,他引:1  
Rad54, a member of the SWI/SNF protein family of DNA-dependent ATPases, repairs DNA double-strand breaks (DSBs) through homologous recombination. Here we demonstrate that Rad54 is required for the timely accumulation of the homologous recombination proteins Rad51 and Brca2 at DSBs. Because replication protein A and Nbs1 accumulation is not affected by Rad54 depletion, Rad54 is downstream of DSB resection. Rad54-mediated Rad51 accumulation does not require Rad54's ATPase activity. Thus, our experiments demonstrate that SWI/SNF proteins may have functions independent of their ATPase activity. However, quantitative real-time analysis of Rad54 focus formation indicates that Rad54's ATPase activity is required for the disassociation of Rad54 from DNA and Rad54 turnover at DSBs. Although the non-DNA-bound fraction of Rad54 reversibly interacts with a focus, independent of its ATPase status, the DNA-bound fraction is immobilized in the absence of ATP hydrolysis by Rad54. Finally, we show that ATP hydrolysis by Rad54 is required for the redistribution of DSB repair sites within the nucleus.  相似文献   
77.
Transposases are proteins that have assumed the mobility of class II transposable elements. In order to map the interfaces involved in transposase-transposase interactions, we have taken advantage of 12 transposase mutants that impair mariner transposase-transposase interactions taking place during transposition. Our data indicate that transposase-transposase interactions regulating Mos1 transposition are sophisticated and result from (i) active MOS1 dimerization through the first HTH of the N-terminal domain, which leads to inverted terminal repeat (ITR) binding; (ii) inactive dimerization carried by part of the C-terminal domain, which prevents ITR binding; and (iii) oligomerization. Inactive dimers are nonpermissive in organizing complexes that produce ITR binding, but the interfaces (or interactions) supplied in this state could play a role in the various rearrangements needed during transposition. Oligomerization is probably not due to a specific MOS1 domain, but rather the result of nonspecific interactions resulting from incorrect folding of the protein. Our data also suggest that the MOS1 catalytic domain is a main actor in the overall organization of MOS1, thus playing a role in MOS1 oligomerization. Finally, we propose that MOS1 behaves as predicted by the pre-equilibrium existing model, whereby proteins are found to exist simultaneously in populations with diverse conformations, monomers and active and inactive dimers for MOS1. We were able to identify several MOS1 mutants that modify this pre-existing equilibrium. According to their properties, some of these mutants will be useful tools to break down the remaining gaps in our understanding of mariner transposition.  相似文献   
78.
We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target. Furthermore, we demonstrate that the notion of workspace travelled by the hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting obstacles on the way when performing reaching. We find that the gaze proactively coordinates the pattern of eye–arm motion during obstacle avoidance. This study provides also a quantitative assessment of the coupling between the eye–arm–hand motion. We show that the coupling follows regular phase dependencies and is unaltered during obstacle avoidance. These observations provide a basis for the design of a computational model. Our controller extends the coupled dynamical systems framework and provides fast and synchronous control of the eyes, the arm and the hand within a single and compact framework, mimicking similar control system found in humans. We validate our model for visuomotor control of a humanoid robot.  相似文献   
79.
The microarray approach has been proposed for high throughput analysis of the microbial community by providing snapshots of the microbial diversity under different environmental conditions. For this purpose, a prototype of a 16S rRNA-based taxonomic microarray was developed and evaluated for assessing bacterial community diversity. The prototype microarray is composed of 122 probes that target bacteria at various taxonomic levels from phyla to species (mostly Alphaproteobacteria). The prototype microarray was first validated using bacteria in pure culture. Differences in the sequences of probes and potential target DNAs were quantified as weighted mismatches (WMM) in order to evaluate hybridization reliability. As a general feature, probes having a WMM > 2 with target DNA displayed only 2.8% false positives. The prototype microarray was subsequently tested with an environmental sample, which consisted of an Agrobacterium-related polymerase chain reaction amplicon from a maize rhizosphere bacterial community. Microarray results were compared to results obtained by cloning-sequencing with the same DNA. Microarray analysis enabled the detection of all 16S rRNA gene sequences found by cloning-sequencing. Sequences representing only 1.7% of the clone library were detected. In conclusion, this prototype 16S rRNA-based taxonomic microarray appears to be a promising tool for the analysis of Alphaproteobacteria in complex ecosystems.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号