首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   35篇
  国内免费   1篇
  2024年   1篇
  2022年   4篇
  2021年   13篇
  2020年   3篇
  2019年   9篇
  2018年   16篇
  2017年   11篇
  2016年   17篇
  2015年   21篇
  2014年   30篇
  2013年   27篇
  2012年   41篇
  2011年   38篇
  2010年   21篇
  2009年   16篇
  2008年   30篇
  2007年   27篇
  2006年   22篇
  2005年   18篇
  2004年   16篇
  2003年   14篇
  2002年   12篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有419条查询结果,搜索用时 15 毫秒
411.
The concept of the tripartite synapse reflects the important role that astrocytic processes are thought to play in the function and regulation of neuronal synapses in the mammalian nervous system. However, many basic aspects regarding the dynamic interplay between pre- and postsynaptic neuronal structures and their astrocytic partners remain to be explored. A major experimental hurdle has been the small physical size of the relevant glial and synaptic structures, leaving them largely out of reach for conventional light microscopic approaches such as confocal and two-photon microscopy. Hence, most of what we know about the organization of the tripartite synapse is based on electron microscopy, which does not lend itself to investigating dynamic events and which cannot be carried out in parallel with functional assays. The development and application of superresolution microscopy for neuron–glia research is opening up exciting experimental opportunities in this regard. In this paper, we provide a basic explanation of the theory and operation of stimulated emission depletion (STED) microscopy, outlining the potential of this recent superresolution imaging modality for advancing our understanding of the morpho-functional interactions between astrocytes and neurons that regulate synaptic physiology.  相似文献   
412.
Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b—a kinesin—and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front–rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway–dependent activation.  相似文献   
413.
414.
Microbial reduction of soluble selenium (Se) or tellurium (Te) species results in immobilization as elemental forms and this process has been employed in soil bioremediation. However, little is known of direct and indirect fungal interactions with Se-/Te-bearing ores. In this research, the ability of Phoma glomerata to effect transformation of selenite and tellurite was investigated including interaction with Se and Te present in sulfide ores from the Kisgruva Proterozoic volcanogenic deposit. Phoma glomerata could precipitate elemental Se and Te as nanoparticles, intracellularly and extracellularly, when grown with selenite or tellurite. The nanoparticles possessed various surface capping molecules, with formation being influenced by extracellular polymeric substances. The presence of sulfide ore also affected the production of exopolysaccharide and protein. Although differences were undetectable in gross Se and Te ore levels before and after fungal interaction using X-ray fluorescence, laser ablation inductively coupled plasma mass spectrometry of polished flat ore surfaces revealed that P. glomerata could effect changes in Se/Te distribution and concentration indicating Se/Te enrichment in the biomass. These findings provide further understanding of fungal roles in metalloid transformations and are relevant to the geomicrobiology of environmental metalloid cycling as well as informing applied approaches for Se and Te immobilization, biorecovery or bioremediation.  相似文献   
415.
416.
417.
Ectocarpus siliculosus is being developed as a model organism for brown algal genetics and genomics.1,2 Brown algae are phylogenetically distant from the other multicellular phyla (green lineage, red algae, fungi and metazoan)3 and therefore might offer the opportunity to study novel and alternative developmental processes that lead to the establishment of multicellularity. E. siliculosus develops as uniseriate filaments, thereby displaying one of the simplest architectures among multicellular organisms.4 The young sporophyte grows as a primary filament and then branching occurs, preferentially at the center of the filament. We recently described the first morphogenetic mutant étoile (etl) in a brown alga, produced by UVB mutagenesis in E. siliculosus.5 We showed that a single recessive mutation was responsible for a defect in both cell differentiation and the very early branching pattern (first and second branch emergences). Here, we supplement this study by reporting the branching defects observed subsequently, i.e. for the later stages corresponding to the emergence of up to the first six secondary filaments, and we show that the branching process is composed of at least two distinct components: time and position.   The developmental pattern of E. siliculosus is characterized by a very high level of morphological plasticity.6 Observations followed by statistical analyses allowed analyzing the morphometric features accompanying the establishment of the branching pattern in the mutant étoile, compared with the wild type (WT) organism (strain Ec32). The branching pattern can be deciphered in two main components: (1) the timing of branching and (2) the position of branching.  相似文献   
418.
419.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号