首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   39篇
  国内免费   1篇
  2022年   4篇
  2021年   8篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   10篇
  2014年   6篇
  2013年   15篇
  2012年   20篇
  2011年   14篇
  2010年   3篇
  2009年   10篇
  2008年   10篇
  2007年   13篇
  2006年   17篇
  2005年   11篇
  2004年   20篇
  2003年   18篇
  2002年   14篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1996年   3篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1977年   5篇
  1976年   7篇
  1973年   3篇
  1966年   3篇
  1963年   3篇
  1961年   3篇
  1955年   2篇
  1951年   2篇
  1950年   3篇
  1938年   3篇
  1932年   2篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
31.
32.
33.
Atypical protein kinase C (aPKC) isozymes function in epithelial cell polarity, proliferation, and survival and have been implicated in cellular transformation. However, the role of these enzymes in human cancer is largely unexplored. Here, we report that aPKCiota is highly expressed in human non-small cell lung cancer cell lines, whereas the closely related aPKC isozyme PKCzeta is undetectable in these cells. Disruption of PKCiota signaling reveals that PKCiota is dispensable for adherent growth of non-small cell lung cancer cells but is required for transformed growth in soft agar in vitro and for tumorigenicity in vivo. Molecular dissection of signaling down-stream of PKCiota demonstrates that Rac1 is a critical molecular target for PKCiota-dependent transformation, whereas PKCiota is not necessary for NFkappaB activation in vitro or in vivo. Expression of the PB1 domain of PKCiota (PKCiota-(1-113)) blocks PKCiota-dependent Rac1 activity and inhibits cellular transformation indicating a role for this domain in the transforming activity of PKCiota. Taken together, our data demonstrate that PKCiota is a critical lung cancer gene that activates a Rac1-->Pak-->Mek1,2-->Erk1,2 signaling pathway required for transformed growth. Our data indicate that PKCiota may be an attractive molecular target for mechanism-based therapies for treatment of lung cancer.  相似文献   
34.
Protein kinase C betaII (PKCbetaII) promotes colon carcinogenesis. Expression of PKCbetaII in the colon of transgenic mice induces hyperproliferation and increased susceptibility to colon cancer. To determine molecular mechanisms by which PKCbetaII promotes colon cancer, we established rat intestinal epithelial (RIE) cells stably expressing PKCbetaII. Here we show that RIE/PKCbetaII cells acquire an invasive phenotype that is blocked by the PKCbeta inhibitor LY379196. Invasion is not observed in RIE cells expressing a kinase-deficient PKCbetaII, indicating that PKCbetaII activity is required for the invasive phenotype. PKCbetaII induces activation of K-Ras and the Ras effector, Rac1, in RIE/PKCbetaII cells. PKCbetaII-mediated invasion is blocked by the Mek inhibitor, U0126, and by expression of either dominant negative Rac1 or kinase-deficient atypical PKCiota. Expression of constitutively active Rac1 induces Mek activation and invasion in RIE cells, indicating that Rac1 is the critical downstream effector of PKCbetaII-mediated invasion. Taken together, our results define a novel PKCbetaII --> Ras --> PKCiota /Rac1 --> Mek signaling pathway that induces invasion in intestinal epithelial cells. This pathway provides a plausible mechanism by which PKCbetaII promotes colon carcinogenesis.  相似文献   
35.
Protein kinase C betaII (PKCbetaII) is induced early during colon carcinogenesis. Transgenic mice expressing elevated PKCbetaII in the colonic epithelium (transgenic PKCbetaII mice) exhibit hyperproliferation and enhanced colon carcinogenesis. Here we demonstrate that nullizygous PKCbeta (PKCbetaKO) mice are highly resistant to azoxymethane (AOM)-induced preneoplastic lesions, aberrant crypt foci. However, reexpression of PKCbetaII in the colon of PKCbetaKO mice by transgenesis restores susceptibility to AOM-induced colon carcinogenesis. Expression of human PKCbetaII in rat intestinal epithelial (RIE) cells induces expression of endogenous rat PKCbetaII mRNA and protein. Induction of PKCbetaII is dependent upon catalytically active PKCbetaII and does not appear to involve changes in alternative splicing of the PKCbeta gene. Two human PKCbeta promoter constructs are activated by expression of PKCbetaII in RIE cells. Both PKCbeta promoter activity and PKCbetaII mRNA levels are inhibited by the MEK1 and -2 inhibitor U0126, but not the Cox-2 inhibitor celecoxib in RIE/PKCbetaII cells. PKCbeta promoter activity correlates directly with expression of endogenous PKCbetaII mRNA and protein in HT29 and HCT116 human colon cancer cell lines. PKCbeta promoter activity and PKCbetaII mRNA expression in HCT116 cells are inhibited by the selective PKCbeta inhibitor LY317615 and by U0126, demonstrating autoregulation of PKCbetaII expression. Transgenic PKCbetaII mice exhibit specific induction of endogenous PKCbetaII, but not its splice variant PKCbetaI, in the colonic epithelium in vivo. Taken together, our results demonstrate that 1) expression of PKCbetaII in the colonic epithelium is both necessary and sufficient to confer susceptibility to AOM-induced colon carcinogenesis in transgenic mice, 2) PKCbetaII regulates its own expression in RIE and human colon cancer cells in vitro and in the colonic epithelium in vivo, and 3) PKCbetaII autoregulation is mediated through a MEK-dependent signaling pathway in RIE/PKCbetaII and HCT116 colon cancer cells.  相似文献   
36.
37.
Utilizing a PCR-based subtractive cDNA approach, we demonstrated that the marine diatom Thalassiosira pseudonana exhibits a rapid response at the gene level to elevated concentrations of copper and that this response attenuates over 24 h of continuous exposure. A total of 16 copper-induced genes were identified, 11 of which were completely novel; however, many of the predicted amino acid sequences had characteristics suggestive of roles in ameliorating copper toxicity. Most of the novel genes were not equivalently induced by H2O2- or Cd-induced stress, indicating specificity in response. Two genes that could be assigned functions based on homology were also induced under conditions of general cellular stress. Half of the identified genes were located within two inverted repeats in the genome, and novel genes in one inverted repeat had mRNA levels induced by approximately 500- to 2,000-fold by exposure to copper for 1 h. Additionally, some of the inverted repeat genes demonstrated a dose-dependent response to Cu, but not Cd, and appear to belong to a multigene family. This multigene family may be the diatom functional homolog of metallothioneins.  相似文献   
38.
Recombinant antibodies: towards a new generation of antivenoms?   总被引:1,自引:0,他引:1  
Poisoning by scorpion venoms is a major health hazard in tropical and subtropical regions and serum therapy, which was discovered in 1894, remains the only specific treatment. No real progress has been made since this time and the therapeutic use of antivenoms which still consists in polyclonal antibody fragments from the sera of immunized animals may be associated with major drawbacks. Protein engineering now allows to design novel recombinant antibody fragments which are superior to polyclonal antivenoms in homogeneity, specific activity and possibly safety. Several single-chain antibody fragments (scFvs) which neutralize scorpion toxins have been produced and characterized over the last few years. These scFvs can also be used as building blocks to engineer more complex structures including multivalent monospecific antibody fragments (diabodies, triabodies) and bispecific molecules (tandem-scFv). Some of these molecules neutralize scorpion neurotoxins and protect mice from experimental envenoming. Thus, research projects currently underway suggest that new strategies might soon be available to treat poisonings in the absence of socio-economic considerations.  相似文献   
39.
40.

Background and aims

Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus deltoides Bartr. and Platanus occidentalis L.) and broad (Liquidambar styraciflua L. and Pinus taeda L.) site requirements while grown with a range of nutrient and water resources.

Methods

We constructed N budgets by measuring N concentration ([N]) and N content (N C ) of above- and belowground perennial and ephemeral tissues, determined N uptake (N UP ), and calculated N use efficiency (NUE).

Results

Forest stands regulated [N] within species-specific operating ranges without clear temporal or treatment patterns, thus demonstrating equilibrium between tissue [N] and biomass accumulation. Forest stand N C and N UP increased with stand development and paralleled treatment patterns of biomass accumulation, suggesting productivity is tightly linked to N UP . Inclusion of above- and belowground ephemeral tissue turnover in N UP calculations demonstrated that maximum N demand for narrow-sites adapted species exceeded 200?kg?N ha?1?year?1 while demand for broad-site adapted species was below this level. NUE was species dependent but not consistently influenced by N availability, suggesting relationships between NUE and resource availability were species dependent.

Conclusions

Based on early stand development, species with broad site adaptability are favored for woody cropping systems because they maintain high above- and belowground productivity with minimal fertilization requirements due to higher NUE than narrow site adapted species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号