首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   33篇
  2023年   6篇
  2022年   8篇
  2021年   11篇
  2020年   10篇
  2019年   13篇
  2018年   8篇
  2017年   13篇
  2016年   18篇
  2015年   26篇
  2014年   28篇
  2013年   51篇
  2012年   61篇
  2011年   59篇
  2010年   41篇
  2009年   28篇
  2008年   37篇
  2007年   40篇
  2006年   25篇
  2005年   22篇
  2004年   25篇
  2003年   25篇
  2002年   23篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1994年   3篇
  1993年   7篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   8篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1974年   4篇
  1973年   4篇
  1970年   3篇
  1969年   2篇
  1968年   4篇
  1964年   2篇
  1934年   1篇
  1932年   1篇
排序方式: 共有680条查询结果,搜索用时 187 毫秒
41.
Imaging of glutamate carboxypeptidase II (GCP II), also known as N-acetylated alpha-linked L-amino dipeptidase (NAALADase), may enable study of glutamatergic transmission, prostate cancer, and tumor neovasculature in vivo. Our goal was to develop a probe for GCP II for use with positron emission tomography (PET). Radiosynthesis of 11C-MeCys-C(O)-Glu or 11C-(S)-2-[3-((R)-1-carboxy-2-methylsulfanyl-ethyl)-ureido]-pentanedioic acid (11C-MCG), an asymmetric urea and potent (Ki = 1.9 nM) inhibitor of GCP II, was performed by C-11 methylation of the free thiol. Biodistribution of 11C-MCG was assayed in mice, and quantitative PET was performed in a baboon. 11C-MCG was obtained in 16% radiochemical yield at the end of synthesis with specific radioactivities over 167 GBq/mmol (4000 Ci/mmol) within 30 min after the end of bombardment. At 30 min postinjection, 11C-MCG showed 33.0 +/- 5.1%, 0.4 +/- 0.1%, and 1.1 +/- 0.2% ID/g in mouse kidney (target tissue), muscle, and blood, respectively. Little radioactivity gained access to the brain. Blockade with unlabeled MCG or 2-(phosphonomethyl)pentanedioic acid (PMPA), another potent inhibitor of GCP II, provided sevenfold and threefold reductions, respectively, in binding to target tissue. For PET, distribution volumes (DVs) were 1.38 then 0.87 pre- and postblocker (PMPA). Little metabolism of 11C-MCG occurred in the mouse or baboon. These results suggest that 11C-MCG may be useful for imaging GCP II in the periphery.  相似文献   
42.
Summary: PGAGENE is a web-based gene-specific genomic data search engine, which allows users to search over 5.9 million pieces of collective genetic and genomic data from the NHLBI supported Programs for Genomic Applications. This data includes microarray measurements, SNPs, and mutations, and data may be found using symbols, parts of gene names or products, Affymetrix probe IDs, GenBank accession numbers, UniGene IDs, dbSNP IDs, and others. The PGAGENE indexing agent periodically maps all publicly available gene-specific PGA data onto LocusLink using dynamically generated cross-referencing tables.  相似文献   
43.
Two new acyl sucroses were isolated from the epigeal parts of Petunia nyctaginiflora Juss. (Solanaceae). Their structures were determined to be 2, 3, 4-tri (5-methylhexanoyl)-alpha-D-glucopyranosyl-beta-D-fructofuranoside (2) and 2, 3, 4-tri (6-methylheptanoyl)-alpha-D-glucopyranosyl-beta-D-fructofuranoside (4) on the basis of chemical and spectroscopic evidence.  相似文献   
44.
Rho family GTPases regulate the cytoskeleton and cell migration and are frequently overexpressed in tumours. Here, we identify two modes of tumour-cell motility in 3D matrices that involve different usage of Rho signalling. Rho signalling through ROCK promotes a rounded bleb-associated mode of motility that does not require pericellular proteolysis. This form of motility requires ezrin, which is localized in the direction of cell movement. In contrast, elongated cell motility is associated with Rac-dependent F-actin-rich protrusions and does not require Rho, ROCK or ezrin function. Combined blockade of extracellular proteases and ROCK negates the ability of tumour cells to switch between modes of motility and synergises to prevent tumour cell invasion.  相似文献   
45.
We describe the docking of selected steroidal and non-steroidal estrone sulphatase inhibitors, including the Phase I clinical trial candidate 667COUMATE (6), into the active site of human carbonic anhydrase II (hCA II). The docking scores are compared with the inhibition of hCA II and show good correlation with biological activity.  相似文献   
46.
47.
48.
Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.  相似文献   
49.
Multiple mucosal immune factors, such as TNF-α and IL-1β, are thought to be key mediators involved in inflammatory bowel disease. We evaluated the role of the pro-inflammatory cytokine TNF-α on nitric oxide synthase (NOS) expression in indomethacin-induced jejunoileitis in rats. Jejunoileitis was induced in rats with subcutaneous injections of indomethacin (7.5 mg/kg) 24 h apart for two consecutive days, and animals were randomized into four groups. Group 1 received only indomethacin. Group 2 was treated with a daily dose of phosphodiesterase (PDE) inhibitor (theophylline or pentoxifylline) by oral gavage for 2 days before and 4 days after indomethacin. Group 3 received a single dose of anti-TNF-α monoclonal antibody (TNF-Ab, IP) 30 min before indomethacin. Group 4 was treated with 1 h hyperbaric oxygenation (HBO2) for 5 days after indomethacin. Rats were sacrificed at 12 h or 4 days after final indomethacin injection. PDE inhibitor, TNF-Ab, or HBO2 treatment significantly decreased indomethacin-induced ulceration, myeloperoxidase activity, and disease activity index. Although indomethacin significantly increased serum TNF-α and nitrate/nitrite (NOx) concentrations above control values at 12 h, inducible NOS (iNOS) expression was detected only at day 4. Serum IL-1β levels did not change at 12 h but increased 4-fold after 4 days. Indomethacin had no effect on constitutive NOS. Treatment with PDE inhibitor, TNF-Ab, or HBO2 significantly reduced serum/tissue TNF-α, IL-1β, NOx, and iNOS expression. Our data show TNF-α plays an early pro-inflammatory role in indomethacin-induced jejunoileitis. Additionally, down-regulation of NOx by PDE inhibitors, TNF-Ab, or HBO2 suggests that TNF-α modulates iNOS expression.  相似文献   
50.
Listeria monocytogenes is a food-borne pathogen that grows at refrigeration temperatures and increases its content of anteiso-C15:0 fatty acid, which is believed to be a homeoviscous adaptation to ensure membrane fluidity, at these temperatures. As a possible novel approach for control of the growth of the organism, the influences of various fatty acid precursors, including branched-chain amino acids and branched- and straight-chain carboxylic acids, some of which are also well-established food preservatives, on the growth and fatty acid composition of the organism at 37°C and 10°C were studied in order to investigate whether the organism could be made to synthesize fatty acids that would result in impaired growth at low temperatures. The results indicate that the fatty acid composition of L. monocytogenes could be modulated by the feeding of branched-chain amino acid, C4, C5, and C6 branched-chain carboxylic acid, and C3 and C4 straight-chain carboxylic acid fatty acid precursors, but the growth-inhibitory effects of several preservatives were independent of effects on fatty acid composition, which were minor in the case of preservatives metabolized via acetyl coenzyme A. The ability of a precursor to modify fatty acid composition was probably a reflection of the substrate specificities of the first enzyme, FabH, in the condensation of primers of fatty acid biosynthesis with malonyl acyl carrier protein.Listeriosis is a severe and life-threatening human infection encompassing meningoencephalitis, meningitis, focal infections in the immunocompromised, and stillbirths and neonatal sepsis due to infection of pregnant women (2). The disease is caused by the Gram-positive food-borne pathogen Listeria monocytogenes, which is responsible for common-source and sporadic disease involving a variety of different foods (27). Listeriosis has a high fatality rate (24). The U.S. Department of Agriculture has a zero tolerance policy for L. monocytogenes in ready-to-eat products, and high costs are associated with product recalls.L. monocytogenes has a remarkably low minimum growth temperature, e.g., −0.1°C (34), and thus the organism can multiply to dangerous levels when food is kept at refrigeration temperatures. We are interested in the molecular mechanisms of L. monocytogenes psychrotolerance, with a view to applying this knowledge to improve the control of the growth of the organism. Although the adaptations involved in low-temperature tolerance are global in scope, we have focused on changes in fatty acid composition that result in homeoviscous adjustments of membrane fluidity (31, 36). L. monocytogenes has a fatty acid composition that is dominated to an unusual extent (90% or more) by branched-chain fatty acids (BCFAs); the major fatty acids are anteiso-C15:0, anteiso-C17:0, and iso-C15:0. Numerous studies have shown that the major change in fatty acid composition when L. monocytogenes is grown at low temperatures is an increase in the content of anteiso-C15:0 fatty acid to 65% or more of the total (1, 12, 23, 25, 26, 28). Two cold-sensitive mutants with Tn917 insertions in the branched-chain α-keto acid dehydrogenase gene complex (bkd) were deficient in BCFAs, grew poorly at low temperatures, and had decreased membrane fluidity; all of these defects could be restored by growth in the presence of 2-methylbutyrate (2-MB), a precursor of odd-numbered anteiso fatty acids, including anteiso-C15:0 fatty acid (1, 7, 13, 37). We believe that anteiso-C15:0 fatty acid imparts fluidity to the cytoplasmic membrane, as revealed by its low phase transition temperature in model phospholipids (18) and disruption of the close packing of fatty acyl chains (21, 35).The amino acids isoleucine, leucine, and valine are the starting points for the biosynthesis of odd-numbered anteiso, odd-numbered iso, and even-numbered iso fatty acids, respectively (18, 37). The amino acids are converted to their corresponding α-keto acid derivatives through the activity of branched-chain amino acid transaminase. Branched-chain α-keto acid dehydrogenase (Bkd) then converts these α-keto compounds to branched-chain acyl coenzyme A (acyl-CoA) primers of fatty acid biosynthesis (18). These primers are then used to initiate fatty acid biosynthesis through the activity of β-ketoacyl-acyl carrier protein synthase III (FabH), which prefers branched-chain acyl-CoAs to acetyl-CoA as substrates (4, 22, 32). β-Keto-acyl carrier protein synthase II (FabF) is responsible for subsequent rounds of elongation until the acyl chain reaches 14 to 17 carbon atoms (36).We wished to ascertain whether we could manipulate the fatty acid composition of L. monocytogenes by feeding precursors that favored the production of fatty acids other than anteiso-C15:0 and thereby inhibit the growth of the organism, especially at low temperatures. Kaneda (15, 16) has grouped Bacillus subtilis fatty acids into four pairs based on the precursors from which they are generated, i.e., anteiso-C15:0 and C17:0 from isoleucine, iso-C15:0 and C17:0 from leucine, iso-C14:0 and C16:0 from valine, and n-C14:0 and n-C16:0 from acetate or butyrate. The proportions of the fatty acids could be modulated by precursor feeding. We have studied the effects of feeding the potential fatty acid precursors branched-chain amino acids, branched-chain α-keto acids, short branched-chain carboxylic acids, short straight-chain carboxylic acids, medium-length straight-chain carboxylic acids, branched-chain C6 carboxylic acids, and sodium diacetate (Fig. (Fig.1)1) on the growth and fatty acid composition of L. monocytogenes. Various short-chain carboxylic acids are used as food preservatives (5, 8, 29), and it was of interest to see whether any of them had an effect on the fatty acid composition of L. monocytogenes. Precursors giving rise to C5 and C6 branched-chain acyl-CoA derivatives, propionate, and butyrate had significant impacts on growth and fatty acid composition. Acetate and precursors that were metabolized to acetyl-CoA had minor effects on fatty acid composition, indicating that their preservative action is not due to effects on fatty acid composition.Open in a separate windowFIG. 1.Structures of potential fatty acid precursors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号