首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2154篇
  免费   147篇
  国内免费   1篇
  2023年   13篇
  2022年   34篇
  2021年   61篇
  2020年   33篇
  2019年   40篇
  2018年   42篇
  2017年   63篇
  2016年   73篇
  2015年   91篇
  2014年   112篇
  2013年   183篇
  2012年   218篇
  2011年   164篇
  2010年   121篇
  2009年   96篇
  2008年   106篇
  2007年   114篇
  2006年   99篇
  2005年   98篇
  2004年   91篇
  2003年   71篇
  2002年   66篇
  2001年   21篇
  2000年   20篇
  1999年   12篇
  1998年   15篇
  1997年   10篇
  1996年   12篇
  1995年   6篇
  1994年   6篇
  1993年   11篇
  1992年   11篇
  1991年   11篇
  1990年   15篇
  1989年   10篇
  1988年   14篇
  1987年   9篇
  1986年   12篇
  1985年   10篇
  1983年   10篇
  1982年   8篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1978年   7篇
  1977年   7篇
  1976年   7篇
  1975年   6篇
  1972年   7篇
  1971年   5篇
排序方式: 共有2302条查询结果,搜索用时 15 毫秒
61.
Mycobacterium tuberculosis, the bacterial causative agent of tuberculosis, currently affects millions of people. The emergence of drug-resistant strains makes development of new antibiotics targeting the bacterium a global health priority. Pantothenate kinase, a key enzyme in the universal biosynthesis of the essential cofactor CoA, was targeted in this study to find new tuberculosis drugs. The biochemical characterizations of two new classes of compounds that inhibit pantothenate kinase from M. tuberculosis are described, along with crystal structures of their enzyme-inhibitor complexes. These represent the first crystal structures of this enzyme with engineered inhibitors. Both classes of compounds bind in the active site of the enzyme, overlapping with the binding sites of the natural substrate and product, pantothenate and phosphopantothenate, respectively. One class of compounds also interferes with binding of the cofactor ATP. The complexes were crystallized in two crystal forms, one of which is in a new space group for this enzyme and diffracts to the highest resolution reported for any pantothenate kinase structure. These two crystal forms allowed, for the first time, modeling of the cofactor-binding loop in both open and closed conformations. The structures also show a binding mode of ATP different from that previously reported for the M. tuberculosis enzyme but similar to that in the pantothenate kinases of other organisms.  相似文献   
62.
63.
64.
65.
We have proposed that double metal cyanide compounds (DMCs) might have played vital roles as catalysts in chemical evolution and the origin of life. We have synthesized a series of metal octacyanomolybdates (MOCMos) and studied their interactions with ribose nucleotides. MOCMos have been shown to be effective adsorbents for 5′-ribonucleotides. The maximum adsorption level was found to be about 50 % at neutral pH under the conditions studied. The zinc(II) octacyanomolybdate(IV) showed larger adsorption compared to other MOCMos. The surface area seems to important parameter for the adsorption of nucleotides. The adsorption followed a Langmuir adsorption isotherms with an overall adsorption trends of the order of 5′-GMP > 5′-AMP > 5′-CMP > 5′-UMP. Purine nucleotides were adsorbed more strongly than pyrimidine nucleotides on all MOCMos possibly because of the additional binding afforded by the imidazole ring in purines. Infrared spectral studies of adsorption adducts indicate that adsorption takes place through interaction between adsorbate molecules and outer divalent ions of MOCMos.  相似文献   
66.
Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain.  相似文献   
67.
68.
An indigenously isolated fungal strain Aspergillus flavus MTCC 10938 was subjected to pectin lyase (PNL) production under submerged fermentation conditions. The enzyme was purified to homogeneity from the culture filtrate of the fungus involving concentration by ultrafiltration, anion exchange chromatography on DEAE cellulose and gel filtration chromatography on Sephadex G-100. The purified PNL gave a single protein band in SDS-PAGE analysis with a relative molecular mass corresponding to 50 kDa. Using citrus pectin as the substrate the K m and k cat values of the enzyme were obtained as 1.7 mg/ml and 66 s?1, respectively. The optimum pH of the purified PNL from A. flavus MTCC 10938 was 8.0 and up to 90% of its activity retained in the pH range from 3.0 to 11.0 after 24 h incubation. The optimum temperature of the purified enzyme was revealed at 55°C and it was completely stable up to 40°C when exposed for 30 min. The purified A. flavus MTCC 10938 PNL showed efficient retting of Crotalaria juncea fibres.  相似文献   
69.
Lipophilic chalcones and their conformationally restricted analogues were synthesized and evaluated for their antitubercular efficacy against Mycobacterium tuberculosis H37Rv strain. Compounds 16, 24, 25a and 25c were found to be active MIC at 60, 30, 3.5 and 7.5 μg-mL?1. In vitro cytotoxicity of compounds 16, 24, 25a, 25c and 26 in non-cancerous human epithelial kidney cell line (HEK-293) showed that most active compound 25a was approximately 2.85 times selective towards tubercular versus healthy cells whereas compound 24 was found to be 16 times selective.  相似文献   
70.
A novel group of 1,4-diaryl-substituted triazoles was designed and synthesized by introducing the cyclooxygenase-2 (COX-2) pharmacophore SO2NH2 attached to one aryl ring and various substituents (H, F, Cl, CH3 or OCH3) attached to the other aryl ring. The effects of size and flexibility of the compounds upon COX-1/COX-2 inhibitory potency and selectivity was studied by increasing the size of an alkyl linker chain [(–CH2)n, where n = 0, 1, 2]. In vitro COX-1/COX-2 inhibition studies showed that all compounds (1418, 2125 and 2832) are more potent inhibitors of COX-2 isozyme (IC50 = 0.17–28.0 μM range) compared to COX-1 isozyme (IC50 = 21.0 to >100 μM range). Within the group of 1,4 diaryl-substituted triazoles, 4-{2-[4-(4-chloro-phenyl)-[1,2,3]triazol-1-yl]-ethyl}-benzenesulfonamide (compound 30) displayed highest COX-2 inhibitory potency and selectivity (COX-1: IC50 = >100 μM, COX-2: IC50 = 0.17 μM, SI >588). Molecular docking studies using the catalytic site of COX-1 and COX-2, respectively, provided complementary theoretical support for the obtained experimental biological structure–activity relationship data. Results of molecular docking studies revealed that COX-2 pharmacophore SO2NH2 in compound 30 is positioned in the secondary pocket of COX-2 active site; with the nitrogen atom of the SO2NH2 group being hydrogen bonded to Q192 (N?OC = 2.85 Å), and one of the oxygen atoms of SO2NH2 group forming a hydrogen bond to H90 (SO?N = 2.38 Å).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号