首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   17篇
  292篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   10篇
  2014年   7篇
  2013年   17篇
  2012年   25篇
  2011年   24篇
  2010年   14篇
  2009年   19篇
  2008年   27篇
  2007年   13篇
  2006年   17篇
  2005年   12篇
  2004年   10篇
  2003年   22篇
  2002年   10篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1961年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
51.
This study was undertaken to better understand the physiological role of the retinoylation process in steroidogenic tissues. In adrenal gland mitochondria, the retinoylation extent was found equal to that of testes mitochondria but without ATP in the incubation buffer. We pointed out that the endogenous mitochondrial ATP in adrenal glands is much higher than in testes, about 1.3 x 10−2 M and 5.2 x 10−8 M, respectively. In addition, less CoASH is required for the maximal acylation activity of the retinoyl moiety to protein(s) compared to testes. The fatty acid analysis revealed a different composition of mitochondrial membranes of these two tissues. Among the different values of fatty acids, it is important to note that adrenal glands contain a much higher amount of C18:0 and a much lower amount of C22:5 ω6 and C22:6 ω3 than testes in the mitochondrial membranes. In addition, there were also differences in arachidonic acid (ARA, C20:4 ω6) content between adrenal glands and testes mitochondria. These different values in the fatty acids composition should explain the different extent of the retinoylation process between the two organs.  相似文献   
52.
The multidrug transporter ABCG2, a membrane protein with six transmembrane segments, can be overexpressed with the baculovirus/insect cell system. However, ABCG2 is produced as two species with different migration behavior via SDS–PAGE. Evidences suggest that this is due to the accumulation of an immature ABCG2 species, since: (i) the upper species, with higher apparent molecular weight, was favored by treatments reducing the rate of protein synthesis; (ii) the lower species was accumulated in presence of an endoplasmic reticulum stress inducer, and could be converted into the upper species during electrophoresis with 9 M urea; (iii) each species was differently solubilized by detergents: the upper species was partially solubilized by non-ionic and zwitterionic detergents, whereas the lower one required stronger surfactants; (iv) membrane ATPase activity from infected insect cells was essentially associated to the upper species. Altogether, these results suggest that although the insect cell/baculovirus system is not ideally adapted to overexpress human ABCG2, it is able to produce appreciable amounts of purified protein and the addition of agents reducing the rate of protein synthesis improves the homogeneity, making it a suitable heterologous expression system.  相似文献   
53.
The function of initiation factors in and the sequence of events during translation initiation have been intensively studied in Bacteria and Eukaryotes, whereas in Archaea knowledge on these functions/processes is limited. By employing chemical probing, we show that translation initiation factor aIF1 of the model crenarchaeon Sulfolobus solfataricus binds to the same area on the ribosome as the bacterial and eukaryal orthologs. Fluorescence energy transfer assays (FRET) showed that aIF1, like its eukaryotic and bacterial orthologs, has a fidelity function in translation initiation complex formation, and that both aIF1 and aIF1A exert a synergistic effect in stimulating ribosomal association of the Met-tRNAiMet binding factor a/eIF2. However, as in Eukaryotes their effect on a/eIF2 binding appears to be indirect. Moreover, FRET was used to analyze for the first time the sequence of events toward translation initiation complex formation in an archaeal model system. These studies suggested that a/eIF2-GTP binds first to the ribosome and then recruits Met-tRNAiMet, which appears to comply with the operational mode of bacterial IF2, and deviates from the shuttle function of the eukaryotic counterpart eIF2. Thus, despite the resemblance of eIF2 and a/eIF2, recruitment of initiator tRNA to the ribosome is mechanistically different in Pro- and Eukaryotes.  相似文献   
54.
55.
Fabbretti A  Gualerzi CO  Brandi L 《FEBS letters》2011,585(11):1673-1681
Since their introduction in therapy, antibiotics have played an essential role in human society, saving millions of lives, allowing safe surgery, organ transplants, cancer therapy. Antibiotics have also helped to elucidate several biological mechanisms and boosted the birth and growth of pharmaceutical companies, generating profits and royalties. The golden era of antibiotics and the scientific and economical drive of big pharma towards these molecules is long gone, but the need for effective antibiotics is increased as their pipelines dwindle and multi-resistant pathogenic strains spread. Here we outline some strategies that could help meet this emergency and list promising new targets.  相似文献   
56.
Analysis of rice plants exposed to a broad range of relatively low and environmentally realistic Cd concentrations showed that the root capacity to retain Cd ions rose from 49 to 79%, corresponding to increases in the external Cd2+ concentration in the 0.01-1 μM range. Fractioning of Cd ions retained by roots revealed that different events along the metal sequestration pathway (i.e. chelation by thiols, vacuolar compartmentalization, adsorption) contributed to Cd immobilization in the roots. However, large amounts of Cd ions (around 24% of the total amount) predictable as potentially mobile were still found in all conditions, while the amount of Cd ions loaded in the xylem seemed to have already reached saturation at 0.1 μM Cd2+, suggesting that Cd translocation may also play an indirect role in determining Cd root retention, especially at the highest external concentrations. In silico search and preliminary analyses in yeast suggest OsHMA2 as a good candidate for the control of Cd xylem loading in rice. Taken as a whole, data indicate Cd chelation, compartmentalization, adsorption and translocation processes as components of a complex 'firewall system' which acts in limiting Cd translocation from the root to the shoot and which reaches different equilibrium positions depending on Cd external concentration.  相似文献   
57.
58.
59.
Secondary multidrug (Mdr) transporters utilize ion concentration gradients to actively remove antibiotics and other toxic compounds from cells. The model Mdr transporter MdfA from Escherichia coli exchanges dissimilar drugs for protons. The transporter should open at the cytoplasmic side to enable access of drugs into the Mdr recognition pocket. Here we show that the cytoplasmic rim around the Mdr recognition pocket represents a previously overlooked important regulatory determinant in MdfA. We demonstrate that increasing the positive charge of the electrically asymmetric rim dramatically inhibits MdfA activity and sometimes even leads to influx of planar, positively charged compounds, resulting in drug sensitivity. Our results suggest that unlike the mutants with the electrically modified rim, the membrane-embedded wild-type MdfA exhibits a significant probability of an inward-closed conformation, which is further increased by drug binding. Since MdfA binds drugs from its inward-facing environment, these results are intriguing and raise the possibility that the transporter has a sensitive, drug-induced conformational switch, which favors an inward-closed state.  相似文献   
60.
The structures of sericic acid and sericoside, the major constituents of the roots of Terminalia sericea, have been determined. Sericic acid is 2α,3β,19α,24-tetrahydroxy-olean-12-en-28-oic acid and sericoside the corresponding C-28 D-glucosyl ester.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号