首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   17篇
  292篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   10篇
  2014年   7篇
  2013年   17篇
  2012年   25篇
  2011年   24篇
  2010年   14篇
  2009年   19篇
  2008年   27篇
  2007年   13篇
  2006年   17篇
  2005年   12篇
  2004年   10篇
  2003年   22篇
  2002年   10篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1961年   1篇
排序方式: 共有292条查询结果,搜索用时 0 毫秒
31.
The objective of the paper is to show the very important biophysical concepts that have been developed with polysaccharides. In particular, an attempt will be made to relate “a posteriori” the fundamental aspects, both experimental and theoretical, with some industrial applications of polysaccharide-based materials. The overview of chain conformational aspects includes relationships between topological features and local dynamics, exemplified for some naturally occurring carbohydrate polymers. Thus, by using simulation techniques and computational studies, the physicochemical properties of aqueous solutions of polysaccharides are interpreted. The relevance of conformational disorder–order transitions, chain aggregation, and phase separation to the underlying role of the ionic contribution to these processes is discussed. We stress the importance of combining information from analysis of experimental data with that from statistical–thermodynamic models for understanding the conformation, size, and functional stability of industrially important polysaccharides. The peculiar properties of polysaccharides in industrial applications are summarized for the particularly important example of nanoparticles production, a field of growing relevance and scientific interest.  相似文献   
32.
Different types of extraction protocols are described for identifying proteins in seed and pulp of olive (Olea europea), by employing both conventional extraction methods and capture with ProteoMiner as well as with in house-made combinatorial peptide ligand libraries (HM-CPLLs) at pH 7.4 and at pH 2.2. Thanks to the use of CPLLs, able to dramatically amplify the signal of low-abundance species, a quite large number of compounds has been indeed identified: 61 in the seed (vs. only four reported in current literature) and 231 in the pulp (vs. 56 described so far), the deepest investigation up to the present of the olive proteome. In the seed, it highlights the presence of seed storage proteins, oleosins and histones. In the pulp, the allergenic thaumatin-like protein (Ole e 13) was confirmed, among the other 231, as the most abundant protein in the olive pulp. The present research has also been undertaken with the aim of identifying proteins in olive oil and ascertaining the relative contribution of seed and pulp proteins in their presence, if any, in oils.  相似文献   
33.
* Cadmium (Cd) stress increases cell metabolic demand for sulfur, reducing equivalents, and carbon skeletons, to sustain phytochelatin biosynthesis for Cd detoxification. In this condition the induction of potentially acidifying anaplerotic metabolism in root tissues may be expected. For these reasons the effects of Cd accumulation on anaplerotic metabolism, glycolysis, and cell pH control mechanisms were investigated in maize (Zea mays) roots. * The study compared root apical segments, excised from plants grown for 24 h in a nutrient solution supplemented, or not, with 10 microM CdCl(2), using physiological, biochemical and (31)P-nuclear magnetic resonance (NMR) approaches. * Cadmium exposure resulted in a significant decrease in both cytosolic and vacuolar pH of root cells and in a concomitant increase in the carbon fluxes through anaplerotic metabolism leading to malate biosynthesis, as suggested by changes in dark CO2 fixation, metabolite levels and enzyme activities along glycolysis, and mitochondrial alternative respiration capacity. This scenario was accompanied by a decrease in the net H(+) efflux from the roots, probably related to changes in plasma membrane permeability. * It is concluded that anaplerotic metabolism triggered by Cd detoxification processes might lead to an imbalance in H(+) production and consumption, and then to cell acidosis.  相似文献   
34.
Different methods were tested for the extraction of proteins from the cell wall-enriched fraction (CWEf) obtained from a sample formed by skin and seeds of ripe berries of Vitis vinifera L. cv. Cabernet Sauvignon. The CWEf was isolated using a disruptive approach that involves tissue homogenization and precipitation by centrifugation. To extract proteins, the CWEf was treated with CaCl(2) and LiCl in two successive steps or, alternatively, with phenol. The efficiency of the protocols was evaluated by measuring protein yield and by analyzing two-dimensional gel electrophoresis (2-DE) gels for the highest detectable spot number and the greatest spot resolution. The phenol method was also adopted for the extraction of proteins from the cytosolic fraction (CYf). The comparison of 2-DE reference maps of protein extracts from CWEf and CYf indicated the presence of both common traits and unique characteristics. To survey this aspect some spots detected in both fractions or present in only one fraction were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Of the 47 spots identified, some were found to be cell wall proteins, while others were proteins not traditionally considered as localized in the apoplastic space. The data presented here provide initial information regarding the apoplastic proteome of grape berry tissues, but also raise the issue of the technical problems that characterize the isolation of cell wall proteins from these very hardy tissues.  相似文献   
35.
ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters.  相似文献   
36.
The reactivity and thermostability of a novel mycelium-bound carboxylesterase from lyophilized cells of Aspergillus oryzae are explored in organic solvent. Ethanol acetylation was selected as reference esterification reaction. High carboxylesterase activity cells were used as biocatalyst in batch esterification tests at 12.5 < S(o) < 125 mmol L(-1), 5.0 < X(o) < 30 g L(-1), 0.49 < log P < 4.5 and 30 < T < 80 degrees C, as well as in residual activity tests after incubation at 40 < T < 90 degrees C. The starting rates of product formation were used to estimate with the Arrhenius model the apparent activation enthalpies of the enzymatic reaction (29-33 kJ mol(-1)), the reversible unfolding (56-63 kJ mol(-1)), and the irreversible denaturation (22 kJ mol(-1)) of the biocatalyst.  相似文献   
37.
The effect of estrogens is mediated by activation of estrogen receptors (ERs). Because ER-α gene polymorphisms may exert different effects in childhood, we analyzed the associations between the IVS1 ?397T>C (PvuII) polymorphism and systemic inflammatory state, proangiogenic factors, frequency of monocyte subsets, lipid profile, blood pressure, and vascular complications in girls with type 1 diabetes mellitus (DM1). We examined 180 young girls with DM1 and 120 healthy age-matched controls. The analysis concerned PvuII polymorphism of the ER-α gene as well as the levels of serum inflammatory markers (CRP, IL-6, TNF-α), proangiogenic factors (VEGF, angiogenin), 17β-estradiol, values of monocyte subsets (CD14++CD16? and CD14+CD16+), lipid profile, and blood pressure. In our study, girls with CC genotype had lower level of inflammatory and angiogenic factors and lower frequencies of CD14+CD16+ monocytes in comparison to CT or TT carriers. Simultaneously, the CC carriers had a greater population of CD14++CD16? monocytes, increased blood pressure, and serum levels of: estrogen, total cholesterol, triglycerides, and low-density lipoprotein cholesterol than girls bearing CT or TT genotype. Our study suggests a pleiotropic effect of PvuII polymorphic CC variant on diabetic vasculopathies. Although the CC genotype carriers demonstrate less inflammatory and angiogenic activity, they seem to display less favorable cardiometabolic features. Based on our study, we cannot distinguish PvuII ER-α genotype that could be useful in identification of DM1 girls that are more prone to develop of late vascular complications, before the occurrence of first clinical symptoms.  相似文献   
38.
Pirlindole, a racemic antidepressant drug, was recently resolved using the derivatization method coupled with preparative HPLC. In order to improve this technique, the use of amino acid derivatives as chiral derivatizing agents (CDA) was investigated. Among different residues, the (L)-phenylalanine methyl ester was found to be very effective to separate pirlindole enantiomers using a medium pressure liquid chromatographic (MPLC) method. This procedure is better adapted to preparative application than HPLC. Thus, several grams of the pirlindole antipodes were isolated and characterized. These two enantiomers permitted the study of the stereochemical influence at the pharmacological level. Chirality 11:261–266, 1999. © 1999 Wiley-Liss, Inc.  相似文献   
39.
Thermodynamic properties of the amylose–iodine–triiodide complex have been studied by spectrophotometry and by calorimetry using previously studied samples of amylose ionic derivatives, carboxymethylamylose and diethylaminoethylamylose. The ratio of triiodide to total molecular iodine ([I3]b/[I]b + [I2]b) in the complex is ca. 0.3 over a range of iodide concentration from 10?5 to 10?4M, and there is no evidence for an increasing charge at slightly higher iodide concentration. Direct calorimetric experiments have been carried out in different conditions of polymer, iodine, and iodide concentration in order to study the dependence of the heat of the complexation as a function of the above parameters. It is shown that the dependence of the measured ΔH on the iodide concentration simply derives from the rearrangement of the triiodide equilibrium because of the uptake of a fixed ratio of iodine and triiodide molecules in the complex.  相似文献   
40.
Bacterial translation initiation factor IF2 was localized on the ribosome by rRNA cleavage using free Cu(II):1,10-orthophenanthroline. The results indicated proximity of IF2 to helix 89, to the sarcin-ricin loop and to helices 43 and 44, which constitute the "L11/thiostrepton" stem-loops of 23S rRNA. These findings prompted an investigation of the L11 contribution to IF2 activity and a re-examination of the controversial issue of the effect on IF2 functions of thiostrepton, a peptide antibiotic known primarily as a powerful inhibitor of translocation. Ribosomes lacking L11 were found to have wild-type capacity to bind IF2 but a strongly reduced ability to elicit its GTPase activity. We found that thiostrepton caused a faster recycling of this factor on and off the 70S ribosomes and 50S subunits, which in turn resulted in an increased rate of the multiple turnover IF2-dependent GTPase. Although thiostrepton did not inhibit the P-site binding of fMet-tRNA, the A-site binding of the EF-Tu-GTP-Phe-tRNA or the activity of the ribosomal peptidyl transferase center (as measured by the formation of fMet-puromycin), it severely inhibited IF2-dependent initiation dipeptide formation. This inhibition can probably be traced back to a thiostrepton-induced distortion of the ribosomal-binding site of IF2, which leads to a non-productive interaction between the ribosome and the aminoacyl-tRNA substrates of the peptidyl transferase reaction. Overall, our data indicate that the translation initiation function of IF2 is as sensitive as the translocation function of EF-G to thiostrepton inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号