首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   11篇
  240篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   7篇
  2014年   6篇
  2013年   7篇
  2012年   9篇
  2011年   11篇
  2010年   7篇
  2009年   7篇
  2008年   12篇
  2007年   9篇
  2006年   11篇
  2005年   6篇
  2004年   14篇
  2003年   12篇
  2002年   9篇
  2001年   11篇
  2000年   10篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   5篇
  1991年   10篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
31.
Abstract

Structure of cyclic adenosine diphosphoribose (cADPR) was reinvestigated by using 1H, 13C, and 31P NMR spectroscopy. The 1H-1H coupling constants and NOE data suggested that the adenosine and ribose moieties have a predominant C2′-endo conformation and an unusual flat conformation, respectively.  相似文献   
32.
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain.  相似文献   
33.
Physiological roles of SAPK/JNK signaling pathway   总被引:10,自引:0,他引:10  
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) is activated by many types of cellular stresses and extracellular signals. Recent studies, including the analysis with knockout mice, have led to progress towards understanding the physiological roles of SAPK/JNK activation in embryonic development in addition to immune responses. SAPK/JNK activation plays essential roles in organogenesis during mouse development by regulating cell survival, apoptosis, and proliferation. Two SAPK/JNK activators, SEK1 and MKK7, are required for fetal liver formation and full activation of SAPK/JNK, which responds to various stimuli in an all-or-none manner. This article focuses on physiological roles of SAPK/JNK activation in fetal liver formation and in apoptosis regulation.  相似文献   
34.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   
35.
Oxygen radicals, such as superoxide radicals, embellishing DNA, protein, lipids, etc., and carrying out the obstacle of the function of a cell is known. It depends for the oxidant level in the living body on the balance of a generation system and an elimination system of oxygen radicals, and research which controls an oxidant level in the living body is briskly done by taking in the substance which eliminates an oxygen radical. We investigated scavenging effects of superoxide radicals by selenoureas and thioureas using a highly sensitive and quantitative chemiluminescence method. At 330 nM, five selenoureas and five thioureas scavenged fractions of superoxide radicals (O2-) ranging from 8.4% to 87.6%. Among five N,N-unsubstituted selenoureas and N,N-unsubstituted thioureas 1-selenocarbamoylpiperidine and 1-thiocarbamoylpyrrolidine were the most effective scavengers. A possibility that selenoureas could use it as a new superoxide anion-scavenging substance from the result of this research became clear.  相似文献   
36.
We previously found that transplantation with bone marrow cells (BMCs) improves liver function and liver fibrosis in cirrhotic mice. In the presence of liver damage induced by carbon tetrachloride (CCl4), transplanted BMC migrated into the peri-portal region and trans-differentiated into hepatocytes that produce albumin. Thus under these conditions, BMC transplantation induces liver regeneration. Detecting serum marker proteins is important to monitor the recovery of liver function of cirrhotic mice after BMC transplantation. We therefore initially resolved proteins extracted from serum samples at 48 h after BMC transplantation by 2-DE and compared spot intensity between control and BMC groups of mice. Six protein spots increased in the BMC group compared with the control group. MS revealed that these spots comprised apolipoprotein A1 (apoA1), apolipoprotein C3 (apoC3), vitamin D-binding protein, alpha-1-antitrypsin and proteasome subunit alpha type 1. We subsequently confirmed the levels of apoA1 in serum and liver samples by immunoblotting. ApoA1 increased at early stage (48 h and 1 wk) after BMC transplantation in this mouse model of liver cirrhosis. The early elevation of apoA1 might be useful to predict liver regeneration in cirrhotic mice after BMC transplantation.  相似文献   
37.
Stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) responds to a variety of stress stimuli and controls cell fates such as cell cycle entrance, apoptosis and senescence. Stimuli such as ultraviolet irradiation and chemical reagents that damage genomic DNA induce the activation of the SAPK/JNK signaling pathway. However, it is unclear how the signal arising in the nucleus owing to DNA damage is transmitted to SAPK/JNK in the cytoplasm. Here, we report that the nuclear components Daxx and Ras-association domain family 1C (RASSF1C) link DNA damage to SAPK/JNK activation in HeLa cells. In response to DNA damage, Daxx localized in promyelocytic leukaemia-nuclear bodies (PML-NBs) undergoes ubiquitination and degradation. RASSF1C, a tumor suppressor and newly identified binding partner of Daxx, is constitutively anchored by Daxx in PML-NBs but is released from the nucleus when Daxx is degraded. This released RASSF1C translocates to cytoplasmic microtubules and participates in the activation of SAPK/JNK. Our data define a novel mechanism by which the Daxx-RASSF1C complex in PML-NBs couples nuclear DNA damage to the cytoplasmic SAPK/JNK signaling pathway.  相似文献   
38.
Comparison of the primary structures of pig kidney D-amino acid oxidase (DAO) and human brain D-aspartate oxidase (DDO) revealed a notable difference at I215-N225 of DAO and the corresponding region, R216-G220, of DDO. A DAO mutant, in which I215-N225 is substituted by R216-G220 of DDO, showed D-aspartate-oxidizing activity that wild-type DAO does not exhibit, together with a considerable decrease in activity toward D-alanine. These findings indicate that I215-N225 of DAO contributes profoundly to its substrate specificity. Based on these results and the crystal structure of DAO, we systematically mutated the E220-Y224 region within the short stretch in question and obtained five mutants (220D224G, 221D224G, 222D224G, 223D224G, and 224D), in each of which an aspartate residue is mutated to E220-Y224. All of the mutants exhibited decreased apparent K(m) values toward D-arginine, i.e., to one-seventh to one-half that of wild type DAO. The specificity constant, k(cat app)/K(m app), for D-arginine increased by one order of magnitude for the 221D224G or 222D224G mutant, whereas that for D-alanine or D-serine decreased to marginal or nil.  相似文献   
39.
Apoptosis is associated with morphological changes, including membrane blebbing, cell shrinkage, and chromatin condensation. However, the molecular mechanisms of the dynamic changes in cellular components during apoptosis are largely unknown. Here we developed a new rat monoclonal antibody, 9B1, that specifically immunolabeled dying cells in tissues and in cell cultures. The 9B1 antibody labeled the cytoplasm of apoptotic cells in a caspase-dependent manner. We identified human brain abundant membrane attached signal protein 1 (hBASP1) as the 9B1 antigen using the liquid chromatography with tandem mass spectrometry (LC/MS/MS) method. hBASP1 was present in the nucleus of HeLa cells, but relocated from the nucleus to the cytoplasm after the caspase activation step of apoptosis. Immunostaining analysis revealed that 9B1 preferentially labeled this cytoplasmic form of hBASP1. Labeling by 9B1 to distinguish apoptotic changes could be a novel criterion for determining whether cells with activated caspases are fated for survival or death.  相似文献   
40.
In BALB/c mice infected with Trichinella spiralis, changes in body temperature (Tb) were observed over 35 days after the infection. T. spiralis infection induced hypothermia two times at 7 and 28 days after infection. The initial decrease persisted for about one week with a peak (37.1 +/- 0.62 degrees C) around 10 days after the infection, while the later phase persisted for at least one week. Both 10 and 35 days after the infection, there were remarkable decreases in Tb. The serum glucose level of infected mice at 10 days was significantly (p < 0.01) decreased compared with that of control mice at the same number of days, while the level in infected mice at 35 days was not decreased. Moreover, the later phase of hypothermia was prevented by the cyclooxygenase inhibitor indomethacin (10 mg/kg i.p.), while the initial phase was not. We conclude that hypothermia was caused by two different mechanisms, involving the effects of hypoglycemia and prostaglandins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号