首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5177篇
  免费   265篇
  国内免费   2篇
  5444篇
  2023年   12篇
  2022年   32篇
  2021年   67篇
  2020年   45篇
  2019年   54篇
  2018年   89篇
  2017年   78篇
  2016年   126篇
  2015年   180篇
  2014年   201篇
  2013年   347篇
  2012年   366篇
  2011年   374篇
  2010年   245篇
  2009年   232篇
  2008年   357篇
  2007年   373篇
  2006年   328篇
  2005年   307篇
  2004年   319篇
  2003年   304篇
  2002年   255篇
  2001年   40篇
  2000年   36篇
  1999年   50篇
  1998年   55篇
  1997年   57篇
  1996年   40篇
  1995年   58篇
  1994年   40篇
  1993年   44篇
  1992年   25篇
  1991年   18篇
  1990年   31篇
  1989年   19篇
  1988年   13篇
  1987年   17篇
  1986年   16篇
  1985年   24篇
  1984年   22篇
  1983年   20篇
  1982年   23篇
  1981年   30篇
  1980年   12篇
  1979年   9篇
  1978年   8篇
  1977年   6篇
  1976年   7篇
  1972年   5篇
  1965年   6篇
排序方式: 共有5444条查询结果,搜索用时 15 毫秒
11.
Shp2, a protein tyrosine phosphatase possessing SH2 domains, is utilized in the intracellular signaling of various growth factors. Shp2 is highly expressed in the CNS. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, which also shows high levels of expression in the CNS, exerts neurotrophic and neuromodulatory effects in CNS neurons. We examined how BDNF utilizes Shp2 in its signaling pathway in cultured cerebral cortical neurons. We found that BDNF stimulated coprecipitation of several tyrosine-phosphorylated proteins with anti-Shp2 antibody and that Grb2 and phosphatidylinositol 3-kinase (PI3-K) were coprecipitated with anti-Shp2 antibody in response to BDNF. In addition, both anti-Grb2 and anti-PI3-K antibodies coprecipitated Shp2 in response to BDNF. The BDNF-stimulated coprecipitation of the tyrosine-phosphorylated proteins, Grb2, and PI3-K with anti-Shp2 antibody was completely inhibited by K252a, an inhibitor of TrkB receptor tyrosine kinase. This BDNF-stimulated Shp2 signaling was markedly sustained as well as BDNF-induced phosphorylation of TrkB and mitogen-activated protein kinases. In PC12 cells stably expressing TrkB, both BDNF and nerve growth factor stimulated Shp2 signaling similarly to that by BDNF in cultured cortical neurons. These results indicated that Shp2 shows cross-talk with various signaling molecules including Grb2 and PI3-K in BDNF-induced signaling and that Shp2 may be involved in the regulation of various actions of BDNF in CNS neurons.  相似文献   
12.
13.
14.
Pinus pumila (Pallas) Regel. is a dominant dwarf tree in alpine regions of Japan. The possible factors limiting the net photosynthetic rate (Pn) of the needles of P. pumila were examined in the snow-melting (May) and the summer (August) seasons. In August, in situ maximum Pn was 20 mol kg–1 needle s–1 in the current-year needles and 25 mol kg–1 needle s–1 in the 1-year-old needles. Diurnal trends of Pn in August were positively related to fluctuations in photosynthetic photon flux density (PPFD) and no midday depression of Pn was found, indicating that a decrease in PPFD rather than an increase in needle-to-air vapor pressure deficit (W) might cause the reduction of Pn. Both stomatal conductance (gs) and Pn were lower in May than in August. In May, Pn and gs were almost zero in the morning, but gradually increased with decreasing W, reaching maximum Pn values (4 mol kg–1 needle s–1) and gs (60 mmol kg–1 needle s–1) at 16.00 hours. The daytime Pn in May was positively related to gs. Relative water content in the exposed needles above the snow in May was 83%, which was far above the lethal level. This indicates that the water flow from stems or soils to needles was enough to compensate for a small amount of water loss due to the low gs in May, although the water supplied to needles would be impeded by the low temperatures. Thus, the reduced gs in May would be important for avoiding needle desiccation, and would result in a reduced Pn.  相似文献   
15.
The monogonont rotifer, Brachionus ibericus (S type), is considered to be a promising model species for developmental biology, evolution, and environmental genomics. In an attempt to accelerate the molecular understanding of B. ibericus, we sequenced 680.5 Mb of genomic DNA using the genome sequencer GS-FLX-Titanium. We obtained 2,062,621 reads (average read length 329.9 bp) and 145,418 contigs (total contigs length 125.7 Mb) after excluding small reads (less than 200 bp) from the assembly, and finally obtained 10,133 unigenes (E value ?? 9.00E?04) after non-redundant (NR) BLAST search. In this article, we summarize the genomic DNA sequences of B. ibericus and discuss their potential use in the study of reproductive biology, endocrinology, environmental genomics, and ecotoxicological studies, and for providing insight into the genetic basis of mechanisms such as egg formation, antioxidant stress defense, and xenobiotic metabolism.  相似文献   
16.
17.
18.
There are synaptic vesicles that are labeled by Timm's sulfide-silver staining method in the brain, suggesting that synaptic vesicles contain metals such as zinc and copper. Zinc is co-released with glutamate and the importance of zinc signaling in the intracellular compartment, in addition to extracellular compartment, is becoming recognized. Zinc can pass through calcium channels, while blocking them. Calcium signaling plays a critical role for synaptic activity and crosstalk between zinc signaling with calcium signaling through calcium channels may participate in synaptic neurotransmission including synaptic plasticity such as long-term potentiation. Copper released into the synaptic cleft during synaptic excitation may also participate in synaptic neurotransmission. Other metals including copper potentially serve as calcium channel blockers and also influence calcium signaling and zinc signaling via the interaction with metal-binding proteins such as metallothioneins. Homeostasis of metals needs to be controlled spatiotemporally for proper brain function, and their dyshomeostasis is associated with neurological diseases. However, the data on the dynamic action of metals at synapses is limited and their significance poorly understood. This paper summarizes the action of metals in synaptic neurotransmission focused on calcium signaling at glutamatergic synapses.  相似文献   
19.
The metabolism of the storage polysaccharides glycogen and starch is of vital importance to organisms from all domains of life. In bacteria, utilization of these α-glucans requires the concerted action of a variety of enzymes, including glycoside hydrolases, glycoside phosphorylases, and transglycosylases. In particular, transglycosylases from glycoside hydrolase family 13 (GH13) and GH77 play well established roles in α-glucan side chain (de)branching, regulation of oligo- and polysaccharide chain length, and formation of cyclic dextrans. Here, we present the biochemical and tertiary structural characterization of a new type of bacterial 1,4-α-glucan 4-α-glucosyltransferase from GH31. Distinct from 1,4-α-glucan 6-α-glucosyltransferases (EC 2.4.1.24) and 4-α-glucanotransferases (EC 2.4.1.25), this enzyme strictly transferred one glucosyl residue from α(1→4)-glucans in disproportionation reactions. Substrate hydrolysis was undetectable for a series of malto-oligosaccharides except maltose for which transglycosylation nonetheless dominated across a range of substrate concentrations. Crystallographic analysis of the enzyme in free, acarbose-complexed, and trapped 5-fluoro-β-glucosyl-enzyme intermediate forms revealed extended substrate interactions across one negative and up to three positive subsites, thus providing structural rationalization for the unique, single monosaccharide transferase activity of the enzyme.  相似文献   
20.
NirD is part of the nitrite reductase complex NirBD that catalyses the reduction of nitrite to NH3 in nitrate assimilation and anaerobic respiration. The crystal structure analysis of NirD from Mycobacterium tuberculosis shows a double β‐sandwich fold. NirD is related in three‐dimensional structure and sequence to the Rieske proteins; however, it does not contain any Fe–S cluster or other cofactors that might be involved in electron transfer. A cysteine residue at the protein surface, conserved in NirD homologues lacking the iron–sulfur cluster might be important for the interaction with NirB and possibly stabilize one of the Fe–S centers in this subunit. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号