首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6218篇
  免费   358篇
  国内免费   3篇
  2023年   13篇
  2022年   34篇
  2021年   77篇
  2020年   47篇
  2019年   66篇
  2018年   110篇
  2017年   91篇
  2016年   144篇
  2015年   207篇
  2014年   232篇
  2013年   403篇
  2012年   418篇
  2011年   427篇
  2010年   266篇
  2009年   252篇
  2008年   401篇
  2007年   421篇
  2006年   370篇
  2005年   356篇
  2004年   366篇
  2003年   334篇
  2002年   307篇
  2001年   76篇
  2000年   81篇
  1999年   92篇
  1998年   70篇
  1997年   71篇
  1996年   50篇
  1995年   65篇
  1994年   59篇
  1993年   57篇
  1992年   56篇
  1991年   50篇
  1990年   51篇
  1989年   49篇
  1988年   35篇
  1987年   34篇
  1986年   34篇
  1985年   42篇
  1984年   38篇
  1983年   26篇
  1982年   25篇
  1981年   37篇
  1980年   13篇
  1979年   15篇
  1978年   13篇
  1977年   12篇
  1976年   11篇
  1973年   12篇
  1972年   10篇
排序方式: 共有6579条查询结果,搜索用时 15 毫秒
281.
Desmocollin 1 (Dsc1) is part of a desmosomal cell adhesion receptor formed in terminally differentiating keratinocytes of stratified epithelia. The dsc1 gene encodes two proteins (Dsc1a and Dsc1b) that differ only with respect to their COOH-terminal cytoplasmic amino acid sequences. On the basis of in vitro experiments, it is thought that the Dsc1a variant is essential for assembly of the desmosomal plaque, a structure that connects desmosomes to the intermediate filament cytoskeleton of epithelial cells. We have generated mice that synthesize a truncated Dsc1 receptor that lacks both the Dsc1a- and Dsc1b-specific COOH-terminal domains. This mutant transmembrane receptor, which does not bind the common desmosomal plaque proteins plakoglobin and plakophilin 1, is integrated into functional desmosomes. Interestingly, our mutant mice did not show the epidermal fragility previously observed in dsc1-null mice. This suggests that neither the Dsc1a- nor the Dsc1b-specific COOH-terminal cytoplasmic domain is required for establishing and maintaining desmosomal adhesion. However, a comparison of our mutants with dsc1-null mice suggests that the Dsc1 extracellular domain is necessary to maintain structural integrity of the skin.  相似文献   
282.
283.
Symbiobacterium thermophilum is an uncultivable bacterium isolated from compost that depends on microbial commensalism. The 16S ribosomal DNA-based phylogeny suggests that this bacterium belongs to an unknown taxon in the Gram-positive bacterial cluster. Here, we describe the 3.57 Mb genome sequence of S.thermophilum. The genome consists of 3338 protein-coding sequences, out of which 2082 have functional assignments. Despite the high G + C content (68.7%), the genome is closest to that of Firmicutes, a phylum consisting of low G + C Gram-positive bacteria. This provides evidence for the presence of an undefined category in the Gram-positive bacterial group. The presence of both spo and related genes and microscopic observation indicate that S.thermophilum is the first high G + C organism that forms endospores. The S.thermophilum genome is also characterized by the widespread insertion of class C group II introns, which are oriented in the same direction as chromosomal replication. The genome has many membrane transporters, a number of which are involved in the uptake of peptides and amino acids. The genes involved in primary metabolism are largely identified, except those that code several biosynthetic enzymes and carbonic anhydrase. The organism also has a variety of respiratory systems including Nap nitrate reductase, which has been found only in Gram-negative bacteria. Overall, these features suggest that S.thermophilum is adaptable to and thus lives in various environments, such that its growth requirement could be a substance or a physiological condition that is generally available in the natural environment rather than a highly specific substance that is present only in a limited niche. The genomic information from S.thermophilum offers new insights into microbial diversity and evolutionary sciences, and provides a framework for characterizing the molecular basis underlying microbial commensalism.  相似文献   
284.
Phosphorylation of Rab proteins from the brain of Bombyx mori   总被引:1,自引:0,他引:1  
Rab proteins play fundamental roles in the regulation of membrane traffic. Previously, from the brain of Bombyx mori we isolated two cDNA clones (BRab1 and BRab14), each of which encoded a different member of Rab-protein family and was expressed in Escherichia coli and purified using an affinity chromatography. In this study, one cDNA clone (BRab8) was isolated from a cDNA library from the brain of B. mori. The recombinant protein was expressed in E. coli and purified. Next, the phosphorylations of these three purified BRab proteins were examined, using mammalian protein kinases in vitro. Protein kinase C (PKC) phosphorylated BRab8 and BRab14 proteins. Protein kinase A faintly phosphorylated BRab8 and BRab14 proteins. Calcium/calmodulin-dependent protein kinase faintly phosphorylated BRab8 protein. Next, brains of B. mori were dissected and homogenized. The homogenate showed a calcium-dependent protein kinase activity of BRab8 and BRab14 proteins. So PKC from the brain of B. mori was partially purified by a sequence of chromatographies on DEAE-Cellulofine and affinity chromatography. This PKC phosphorylated BRab8 and BRab14 proteins. These results suggest that the function of Rab proteins in the brain of B. mori is regulated by calcium-dependent protein kinases.  相似文献   
285.
Yamada A  Ishikura T  Yamato T 《Proteins》2004,55(4):1063-1069
We show the unexpectedly important role of the protein environment in the primary step of the photoreaction of the yellow protein after light illumination. The driving force of the trans-to-cis isomerization reaction was analyzed by a computational method. The force was separated into two different components: the term due to the protein-chromophore interaction and the intrinsic term of the chromophore itself. As a result, we found that the contribution from the interaction term was much greater than that coming from the intrinsic term. This accounts for the efficiency of the isomerization reaction in the protein environment in contrast to that in solution environments. We then analyzed the relaxation process of the chromophore on the excited-state energy surface and compared the process in the protein environment and that in a vacuum. Based on this analysis, we found that the bond-selectivity of the isomerization reaction also comes from the interaction between the chromophore and the protein environment.  相似文献   
286.
Insulin receptor substrates (IRSs) 1 and 2 are postulated to control the activation of phosphatidylinositol 3-kinase (PI3K)-dependent signaling factors, namely, atypical protein kinase C (aPKC) and protein kinase B (PKB)/Akt, which mediate metabolic effects of insulin. However, it is uncertain whether aPKC and PKB are activated together or differentially in response to IRS-1 and IRS-2 activation in insulin-sensitive tissues. Presently, we examined insulin activation of aPKC and PKB in vastus lateralis muscle, adipocytes, and liver in wild-type and IRS-1 knockout mice, and observed striking tissue-specific differences. In muscle of IRS-1 knockout mice, the activation of both aPKC and PKB was markedly diminished. In marked contrast, only aPKC activation was diminished in adipocytes, and only PKB activation was diminished in liver. These results suggest that IRS-1 is required for: 1) activation of both aPKC and PKB in muscle; 2) aPKC, but not PKB, activation in adipocytes; and 3) PKB, but not aPKC, activation in liver. Presumably, IRS-2 or other PI3K activators account for the normal activation of aPKC in liver and PKB in adipocytes of IRS-1 knockout mice. These complexities in aPKC and PKB activation may be relevant to metabolic abnormalities seen in tissues in which IRS-1 or IRS-2 is specifically or predominantly down-regulated.  相似文献   
287.
Atypical protein kinase C (aPKC) isoforms have been suggested to mediate insulin effects on glucose transport in adipocytes and other cells. To more rigorously test this hypothesis, we generated mouse embryonic stem (ES) cells and ES-derived adipocytes in which both aPKC-lambda alleles were knocked out by recombinant methods. Insulin activated PKC-lambda and stimulated glucose transport in wild-type (WT) PKC-lambda(+/+), but not in knockout PKC-lambda(-/-), ES cells. However, insulin-stimulated glucose transport was rescued by expression of WT PKC-lambda in PKC-lambda(-/-) ES cells. Surprisingly, insulin-induced increases in both PKC-lambda activity and glucose transport were dependent on activation of proline-rich tyrosine protein kinase 2, the ERK pathway, and phospholipase D (PLD) but were independent of phosphatidylinositol 3-kinase (PI3K) in PKC-lambda(+/+) ES cells. Interestingly, this dependency was completely reversed after differentiation of ES cells to adipocytes, i.e. insulin effects on PKC-lambda and glucose transport were dependent on PI3K, rather than proline-rich tyrosine protein kinase 2/ERK/PLD. As in ES cells, insulin effects on glucose transport were absent in PKC-lambda(-/-) adipocytes but were rescued by expression of WT PKC-lambda in these adipocytes. Our findings suggest that insulin activates aPKCs and glucose transport in ES cells by a newly recognized PI3K-independent ERK/PLD-dependent pathway and provide a compelling line of evidence suggesting that aPKCs are required for insulin-stimulated glucose transport, regardless of whether aPKCs are activated by PI3K-dependent or PI3K-independent mechanisms.  相似文献   
288.
Reactive oxygen species (ROS) produced during exercise may be involved in delayed-onset muscle damage related to inflammation. To investigate this hypothesis, we studied whether oxidative stress increases nuclear translocation of nuclear factor-kappaB and chemokine expression in skeletal muscle using myotube L6 cells. We also assessed whether prolonged acute exercise could increase these parameters in rats. In L6 cells, H(2)O(2) induced nuclear translocation of p65 and increased the expression of cytokine-induced neutrophil chemoattractant-1 (CINC-1) and monocyte chemoattractant protein-1 (MCP-1), whereas preincubation with alpha-tocopherol limited the increase in these proteins. Sprague Dawley rats were divided into the following groups: rested control, exercised, rested with a high alpha-tocopherol diet, and exercised with a high alpha-tocopherol diet. After 3 weeks of acclimation, both exercise groups ran on a treadmill at 25 m/min for 60 min. Exercise increased nuclear p65, CINC-1, and MCP-1 in gastrocnemius muscle cells, but these changes were ameliorated by the high alpha-tocopherol diet. Increases in myeloperoxidase and thiobarbituric acid-reactive substrates were ameliorated by a high alpha-tocopherol diet, as were the histological changes. Neutrophil activity was not altered by either exercise or a high alpha-tocopherol diet. These results indicate that delayed-onset muscle damage induced by prolonged exercise is partly related to inflammation via phagocyte infiltration caused by ROS and that alpha-tocopherol (an antioxidant) can attenuate such inflammatory changes.  相似文献   
289.
Hama H  Hara C  Yamaguchi K  Miyawaki A 《Neuron》2004,41(3):405-415
Here we provide evidence that astrocytes affect neuronal synaptogenesis by the process of adhesion. Local contact with astrocytes via integrin receptors elicited protein kinase C (PKC) activation in individual dissociated neurons cultured in astrocyte-conditioned medium. This activation, initially focal, soon spread throughout the entire neuron. We then demonstrated pharmacologically that the arachidonic acid cascade, triggered by the integrin reception, is responsible for the global activation of PKC. Local astrocytic contact also facilitated excitatory synaptogenesis throughout the neuron, a process which could be blocked by inhibitors of both integrins and PKC. Thus, propagation of PKC signaling represents an underlying mechanism for global neuronal maturation following local astrocyte adhesion.  相似文献   
290.
Soybean globulins were deamidated after removing phytate using ion-exchange resins, and then hydrolyzed by digestive enzymes. The phytate-removed deamidated soybean globulins (PrDS) retained high calcium-binding ability even after the hydrolysis by digestive enzymes. PrDS and its hydrolysates enhanced calcium absorption from the small intestine when injected into the small intestine together with a calcium solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号