全文获取类型
收费全文 | 7813篇 |
免费 | 449篇 |
国内免费 | 4篇 |
专业分类
8266篇 |
出版年
2023年 | 20篇 |
2022年 | 45篇 |
2021年 | 93篇 |
2020年 | 57篇 |
2019年 | 70篇 |
2018年 | 109篇 |
2017年 | 96篇 |
2016年 | 169篇 |
2015年 | 241篇 |
2014年 | 277篇 |
2013年 | 464篇 |
2012年 | 487篇 |
2011年 | 490篇 |
2010年 | 318篇 |
2009年 | 306篇 |
2008年 | 497篇 |
2007年 | 512篇 |
2006年 | 442篇 |
2005年 | 429篇 |
2004年 | 460篇 |
2003年 | 422篇 |
2002年 | 377篇 |
2001年 | 152篇 |
2000年 | 137篇 |
1999年 | 114篇 |
1998年 | 89篇 |
1997年 | 87篇 |
1996年 | 64篇 |
1995年 | 88篇 |
1994年 | 57篇 |
1993年 | 58篇 |
1992年 | 82篇 |
1991年 | 78篇 |
1990年 | 77篇 |
1989年 | 98篇 |
1988年 | 71篇 |
1987年 | 59篇 |
1986年 | 58篇 |
1985年 | 77篇 |
1984年 | 46篇 |
1983年 | 51篇 |
1982年 | 49篇 |
1981年 | 41篇 |
1980年 | 26篇 |
1979年 | 29篇 |
1978年 | 23篇 |
1977年 | 21篇 |
1975年 | 17篇 |
1973年 | 19篇 |
1972年 | 16篇 |
排序方式: 共有8266条查询结果,搜索用时 12 毫秒
81.
Okuyama Y Fujii N Wakabayashi M Kawakita A Ito M Watanabe M Murakami N Kato M 《Molecular biology and evolution》2005,22(2):285-296
Interspecific hybridization is one of the major factors leading to phylogenetic incongruence among loci, but the knowledge is still limited about the potential of each locus to introgress between species. By directly sequencing three DNA regions: chloroplast DNAs (matK gene and trnL-F noncoding region), the nuclear ribosomal external transcribed spacer (ETS) region, and internal transcribed spacer (ITS) regions, we construct three phylogenetic trees of Asian species of Mitella (Saxifragaceae), a genus of perennials in which natural hybrids are commonly observed. Within this genus, there is a significant topological conflict between chloroplast and nuclear phylogenies and also between the ETS and the ITS, which can be attributed to frequent hybridization within the lineage. Chloroplast DNAs show the most extensive introgression pattern, ITS regions show a moderate pattern, and the ETS region shows no evidence of introgression. Nonuniform concerted evolution best explains the difference in the introgression patterns between the ETS region and ITS regions, as the sequence heterogeneity of the ITS region within an individual genome is estimated to be twice that of an ETS in this lineage. Significant gene conversion patterns between two hybridizing taxa were observed in contiguous arrays of cloned ETS-ITS sequences, further confirming that only ITS regions have introgressed bidirectionally. The relatively slow concerted evolution in the ITS regions probably allows the coexistence of multiple alleles within a genome, whereas the strong concerted evolution in the ETS region rapidly eliminates heterogeneous alleles derived from other species, resulting in species delimitations highly concordant with those based on morphology. This finding indicates that the use of multiple molecular tools has the potential to reveal detailed organismal evolution processes involving interspecific hybridization, as an individual locus varies greatly in its potential to introgress between species. 相似文献
82.
Atsushi Tamada Satoshi Kawase Fujio Murakami Hiroyuki Kamiguchi 《The Journal of cell biology》2010,188(3):429-441
The direction of neurite elongation is controlled by various environmental cues. However, it has been reported that even in the absence of any extrinsic directional signals, neurites turn clockwise on two-dimensional substrates. In this study, we have discovered autonomous rotational motility of the growth cone, which provides a cellular basis for inherent neurite turning. We have developed a technique for monitoring three-dimensional motility of growth cone filopodia and demonstrate that an individual filopodium rotates on its own longitudinal axis in the right-screw direction from the viewpoint of the growth cone body. We also show that the filopodial rotation involves myosins Va and Vb and may be driven by their spiral interactions with filamentous actin. Furthermore, we provide evidence that the unidirectional rotation of filopodia causes deflected neurite elongation, most likely via asymmetric positioning of the filopodia onto the substrate. Although the growth cone itself has been regarded as functionally symmetric, our study reveals the asymmetric nature of growth cone motility. 相似文献
83.
84.
The Arabidopsis genome encodes 10 D-type cyclins (CYCD); however, their differential role in cell cycle control is not well known. Among them, CYCD4;2 is unique in the amino acid sequence; namely, it lacks the Rb-binding motif and the PEST sequence that are conserved in CYCDs. Here, we have shown that CYCD4;2 suppressed G1 cyclin mutations in yeast and formed a kinase complex with CDKA;1, an ortholog of yeast Cdc28, in insect cells. Hypocotyl explants of CYCD4;2 over-expressing plants showed faster induction of calli than wild-type explants on a medium containing lower concentration of auxin. These results suggest that CYCD4;2 has a promotive function in cell division by interacting with CDKA;1 regardless of the unusual primary sequence. 相似文献
85.
Prokaryotes are known to have evolved one or more unique organelles. Although several hypotheses have been proposed concerning the biogenesis of these intracellular components, the majority of these proposals remains unclear. Magnetotactic bacteria synthesize intracellular magnetosomes that are enclosed by lipid bilayer membranes. From the identification and characterization of several surface and transmembrane magnetosome proteins, we have postulated that magnetosomes are derived from the cytoplasmic membrane (CM). To confirm this hypothesis, a comparative proteomic analysis of the magnetosome membrane (MM) and CM of the magnetotactic bacterium, Magnetospirillum magneticum AMB-1, was undertaken. Based on the whole genome sequence of M. magneticum AMB-1, 78 identified MM proteins were also found to be prevalent in the CM, several of which are related to magnetosome biosynthesis, such as Mms13, which is tightly bound on the magnetite surface. Fatty acid analysis was also conducted, and showed a striking similarity between the CM and MM profiles. These results suggest that the MM is derived from the CM. 相似文献
86.
We cloned two forms of the secreted and thermostable luciferase genes, MpLuc1 and MpLuc2, from the marine copepod, Metridia pacifica. The 840-bp MpLuc1 cDNA comprised a 630-bp open reading frame encoding a 210-amino acid polypeptide (22.7 kDa). MpLuc1 had the closest homology with Metridia longa luciferase. The 753-bp MpLuc2 cDNA consisted of a 567-bp open reading frame (20.3 kDa), and it had the closest homology with Gaussia princeps luciferase. Single-specimen genomic PCR confirmed the presence of two luciferase genes in M. pacifica, and single-specimen RT-PCR revealed that both luciferase mRNAs were expressed. Both MpLuc1 and MpLuc2 (MpLucs) specifically reacted with the substrate coelenterazine producing identical bioluminescent spectra (lambdamax, 485 nm), but with different kinetics. Adding salt such as MgCl2 and CaCl2 to the reaction mixture significantly enhanced MpLuc1 and MpLuc2 activities. Wild-type MpLucs were remarkably thermostable; MpLuc1 retained about 60% of the original activity even after incubation at 90 degrees C for 30 min. MpLucs expressed in NIH-3T3 and HeLa cells were largely secreted into the culture medium. Continuous monitoring of secreted MpLuc1 driven by the c-fos promoter demonstrated the potential usefulness of MpLuc1 in nondisruptive reporter assays. 相似文献
87.
In viral infections the host innate immune system is meant to act as a first line defense to prevent viral invasion or replication before more specific protection by the adaptive immune system is generated. In the innate immune response, pattern recognition receptors (PRRs) are engaged to detect specific viral components such as viral RNA or DNA or viral intermediate products and to induce type I interferons (IFNs) and other pro-inflammatory cytokines in the infected cells and other immune cells. Recently these innate immune receptors and their unique downstream pathways have been identified. Here, we summarize their roles in the innate immune response to virus infection, discrimination between self and viral nucleic acids and inhibition by virulent factors and provide some recent advances in the coordination between innate and adaptive immune activation. 相似文献
88.
Eiji Kobayashi Hiroyuki KishiMasae Horii Hiroshi HamanaTerumi Nagai Atsushi Muraguchi 《Biochemical and biophysical research communications》2014
Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5′- and 3′-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis. 相似文献
89.
Evidence suggests that aggregated low density lipoprotein (AgLDL) accumulates in atherosclerotic lesions. Previously, we showed that AgLDL induces and enters surface-connected compartments (SCC) in human monocyte-derived macrophages by a process we have named patocytosis. Most AgLDL taken up by these macrophages in the absence of serum is stored in SCC and remains undegraded. We now show that macrophages released AgLDL (prepared by vortexing or treatment with phospholipase C or sphingomyelinase) from their SCC when exposed to 10% human lipoprotein-deficient serum (LPDS). Macrophages also took up AgLDL in the presence of LPDS, but subsequently released it. In both cases, the released AgLDL was disaggregated. Although the AgLDL that macrophages took up could not pass through a 0.45-micrometer filter, >60% of AgLDL could pass this filter after release from the macrophages. Disaggregation of AgLDL was verified by gel-filtration chromatography and electron microscopy that also showed particles larger than LDL, reflecting fusion of LDL that aggregates. The factor in serum that mediated AgLDL release and disaggregation was plasmin generated from plasminogen by macrophage urokinase plasminogen activator. AgLDL release was decreased >90% by inhibitors of plasmin (epsilon-amino caproic acid and anti-plasminogen mAb), and also by inhibitors of urokinase plasminogen activator (plasminogen activator inhibitor-1 and anti-urokinase plasminogen activator mAb). Moreover, plasminogen could substitute for LPDS and produce similar macrophage release and disaggregation of AgLDL. Because only plasmin bound to the macrophage surface is protected from serum plasmin inhibitors, interaction of AgLDL with macrophages was necessary for reversal of its aggregation by LPDS. The released disaggregated LDL particles were competent to stimulate LDL receptor-mediated endocytosis in cultured fibroblasts. Macrophage-mediated disaggregation of aggregated and fused LDL is a mechanism for transforming LDL into lipoprotein structures size-consistent with lipid particles found in atherosclerotic lesions. 相似文献
90.
Atsuyuki Tomizawa Itsuko Ishii Zhivko Zhelev Ichio Aoki Sayaka Shibata Mitsukazu Kitada Rumiana Bakalova 《Biochimica et Biophysica Acta (BBA)/General Subjects》2011