首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2110篇
  免费   161篇
  国内免费   2篇
  2273篇
  2022年   14篇
  2020年   14篇
  2019年   12篇
  2018年   20篇
  2017年   26篇
  2016年   24篇
  2015年   43篇
  2014年   71篇
  2013年   136篇
  2012年   91篇
  2011年   103篇
  2010年   71篇
  2009年   56篇
  2008年   106篇
  2007年   119篇
  2006年   91篇
  2005年   114篇
  2004年   112篇
  2003年   93篇
  2002年   96篇
  2001年   70篇
  2000年   65篇
  1999年   46篇
  1998年   29篇
  1997年   24篇
  1996年   21篇
  1995年   26篇
  1994年   19篇
  1993年   25篇
  1992年   37篇
  1991年   47篇
  1990年   43篇
  1989年   34篇
  1988年   37篇
  1987年   32篇
  1986年   28篇
  1985年   22篇
  1984年   13篇
  1983年   19篇
  1982年   20篇
  1980年   18篇
  1979年   17篇
  1978年   12篇
  1977年   13篇
  1975年   12篇
  1974年   16篇
  1973年   15篇
  1971年   11篇
  1970年   18篇
  1969年   14篇
排序方式: 共有2273条查询结果,搜索用时 15 毫秒
51.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   
52.
53.
The n-alkane-assimilating diploid yeast Candida tropicalis possesses three thiolase isozymes encoded by two pairs of alleles: cytosolic and peroxisomal acetoacetyl-coenzyme A (CoA) thiolases, encoded by CT-T1A and CT-T1B, and peroxisomal 3-ketoacyl-CoA thiolase, encoded by CT-T3A and CT-T3B. The physiological functions of these thiolases have been examined by gene disruption. The homozygous ct-t1aΔ/t1bΔ null mutation abolished the activity of acetoacetyl-CoA thiolase and resulted in mevalonate auxotrophy. The homozygous ct-t3aΔ/t3bΔ null mutation abolished the activity of 3-ketoacyl-CoA thiolase and resulted in growth deficiency on n-alkanes (C10 to C13). All thiolase activities in this yeast disappeared with the ct-t1aΔ/t1bΔ and ct-t3aΔ/t3bΔ null mutations. To further clarify the function of peroxisomal acetoacetyl-CoA thiolases, the site-directed mutation leading acetoacetyl-CoA thiolase without a putative C-terminal peroxisomal targeting signal was introduced on the CT-T1A locus in the ct-t1bΔ null mutant. The truncated acetoacetyl-CoA thiolase was solely present in cytoplasm, and the absence of acetoacetyl-CoA thiolase in peroxisomes had no effect on growth on all carbon sources employed. Growth on butyrate was not affected by a lack of peroxisomal acetoacetyl-CoA thiolase, while a retardation of growth by a lack of peroxisomal 3-ketoacyl-CoA thiolase was observed. A defect of both peroxisomal isozymes completely inhibited growth on butyrate. These results demonstrated that cytosolic acetoacetyl-CoA thiolase was indispensable for the mevalonate pathway and that both peroxisomal acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase could participate in peroxisomal β-oxidation. In addition to its essential contribution to the β-oxidation of longer-chain fatty acids, 3-ketoacyl-CoA thiolase contributed greatly even to the β-oxidation of a C4 substrate butyrate.  相似文献   
54.
We determined the 240-nueleotide sequences of the E/NS1 gene junction of four dengue-2 viruses by the primer extension dideoxy chain termination method. These viruses were isolated from dengue patients with different clinical severities in Nakhon Phanom, Northeastern Thailand in 1993. The results were compared with the 52 published dengue-2 sequences of the same gene region. Sequence divergence of four new isolates varied from 4.17% to 5.42% compared with dengue-2 prototype New Guinea C strain whereas it varied from 5.42% to 6.67% and from 6.67% to 7.09% when compared with Jamaica 1409 strain and PR159/S1 strain, respectively. All nucleotide substitutions were found at the 3rd position of the codons which were silent mutations. All 56 isolates studied were classified into five genotypic groups by constructing the dendrogram. The results indicated that four new isolates from Northeastern Thailand belong to genotype II of dengue virus serotype 2, and were most closely related to prototype New Guinea C strain. We also observed the variation in nucleotide and amino acid sequences among clusters of isolates (Thailand-1980, Malaysia-1989 and Thailand-1993) which were obtained from the dengue patients with different clinical severities. The significance of these genetic differences have been discussed in terms of the possible correlation between genetic variability and virulence.  相似文献   
55.
Hydrogenobacter thermophilus strain TK-6 was observed to grow anaerobically on nitrate as an electron acceptor when molecular hydrogen was used as an energy source. Nitrite was detected as the product of a respiratory reaction. 15NO, 15N2O, and 15N2 were detected with Na15NO3 as an electron acceptor. Western immunoblot analysis showed that cell-free extracts from cells grown on nitrate reacted with antibodies against heme cd1-type nitrite reductase from Pseudomonas aeruginosa. The positive bands, which had molecular masses similar to that of the heme cd1-type nitrite reductase, were also stained by heme staining. These results indicate that nitrite reductase of strain TK-6 is a heme cd1-type enzyme. Activity of ATP:citrate lyase, one of the key enzymes of the reductive TCA cycle, was detected in cell-free extract of cells cultivated on nitrate, which indicates that the cycle operates during anaerobic growth.  相似文献   
56.
Characterization of microbial communities using single-strand conformation polymorphism (SSCP) was compared with that using denaturing gradient gel electrophoresis (DGGE). This comparison was based on the V3-4 region (Escherichia coli positions: 341-806) of 16S rRNA gene of bacterial or archaeal communities obtained from a methanogenic bioreactor. Significant differences in the bacterial banding profiles were observed while attempting to detect the diversity of the community and its succession during the reactor operation. The SSCP produced a number of sharp bands and differentiated the bacterial community structures to which the DGGE gave an identical pattern. On the other hand, the SSCP and DGGE provided similar succession patterns for archaeal community.  相似文献   
57.
GTP-bound Ras adopts two interconverting conformations, "inactive" state 1 and "active" state 2. However, the tertiary structure of wild-type (WT) state 1 remains unsolved. Here we solve the state 1 crystal structures of H-Ras WT together with its oncogenic G12V and Q61L mutants. They assume open structures characterized by impaired interactions of both Thr-35 in switch I and Gly-60 in switch II with the γ-phosphate of GTP and possess two surface pockets of mutually different shapes unseen in state 2, a potential target for selective inhibitor development. Furthermore, they provide a structural basis for the low GTPase activity of state 1.  相似文献   
58.
Electro-transfer of small interfering RNA ameliorated arthritis in rats   总被引:3,自引:0,他引:3  
RNA interference provides the powerful means of sequence-specific gene silencing. Particularly, small interfering RNA (siRNA) duplexes may be potentially useful for therapeutic molecular targeting of human diseases, although novel delivery systems should be devised to achieve efficient and organ-specific transduction of siRNA. In the present study, we demonstrated that electro-transfer of a siRNA-polyamine complex made efficient and specific gene knockdown possible in the articular synovium. Targeted suppression of the tumor necrosis factor-alpha gene through this procedure significantly ameliorated collagen-induced arthritis in rats. Our results suggest the potential feasibility of therapeutic intervention with RNA medicines for treatment of rheumatoid and other locomotor diseases.  相似文献   
59.

Aspergillus niger α-glucosidase (ANG), a member of glycoside hydrolase family 31, catalyzes hydrolysis of α-glucosidic linkages at the non-reducing end. In the presence of high concentrations of maltose, the enzyme also catalyzes the formation of α-(1→6)-glucosyl products by transglucosylation and it is used for production of the industrially useful panose and isomaltooligosaccharides. The initial transglucosylation by wild-type ANG in the presence of 100 mM maltose [Glc(α1–4)Glc] yields both α-(1→6)- and α-(1→4)-glucosidic linkages, the latter constituting ~25% of the total transfer reaction product. The maltotriose [Glc(α1–4)Glc(α1–4)Glc], α-(1→4)-glucosyl product disappears quickly, whereas the α-(1→6)-glucosyl products panose [Glc(α1–6)Glc(α1–4)Glc], isomaltose [Glc(α1–6)Glc], and isomaltotriose [Glc(α1–6)Glc(α1–6)Glc] accumulate. To modify the transglucosylation properties of ANG, residue Asn694, which was predicted to be involved in formation of the plus subsites of ANG, was replaced with Ala, Leu, Phe, and Trp. Except for N694A, the mutations enhanced the initial velocity of the α-(1→4)-transfer reaction to produce maltotriose, which was then degraded at a rate similar to that by wild-type ANG. With increasing reaction time, N694F and N694W mutations led to the accumulation of larger amounts of isomaltose and isomaltotriose than achieved with the wild-type enzyme. In the final stage of the reaction, the major product was panose (N694A and N694L) or isomaltose (N694F and N694W).

  相似文献   
60.
Notch signaling is implicated in many developmental processes. In our current study, we have employed a transgenic strategy to investigate the role of Notch signaling during cardiac development in the mouse. Cre recombinase-mediated Notch1 (NICD1) activation in the mesodermal cell lineage leads to abnormal heart morphogenesis, which is characterized by deformities of the ventricles and atrioventricular (AV) canal. The major defects observed include impaired ventricular myocardial differentiation, the ectopic appearance of cell masses in the AV cushion, the right-shifted interventricular septum (IVS) and impaired myocardium of the AV canal. However, the fates of the endocardium and myocardium were not disrupted in NICD1-activated hearts. One of the Notch target genes, Hesr1, was found to be strongly induced in both the ventricle and the AV canal of NICD1-activated hearts. However, a knockout of the Hesr1 gene from NICD-activated hearts rescues only the abnormality of the AV myocardium. We searched for additional possible targets of NICD1 activation by GeneChip analysis and found that Wnt2, Bmp6, jagged 1 and Tnni2 are strongly upregulated in NICD1-activated hearts, and that the activation of these genes was also observed in the absence of Hesr1. Our present study thus indicates that the Notch1 signaling pathway plays a suppressive role both in AV myocardial differentiation and the maturation of the ventricular myocardium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号