首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   984篇
  免费   67篇
  1051篇
  2023年   2篇
  2022年   9篇
  2021年   12篇
  2020年   7篇
  2019年   9篇
  2018年   14篇
  2017年   17篇
  2016年   19篇
  2015年   31篇
  2014年   39篇
  2013年   61篇
  2012年   71篇
  2011年   64篇
  2010年   45篇
  2009年   37篇
  2008年   67篇
  2007年   63篇
  2006年   58篇
  2005年   63篇
  2004年   71篇
  2003年   58篇
  2002年   61篇
  2001年   16篇
  2000年   11篇
  1999年   7篇
  1998年   10篇
  1997年   16篇
  1996年   15篇
  1995年   4篇
  1994年   13篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
  1969年   1篇
  1967年   1篇
排序方式: 共有1051条查询结果,搜索用时 15 毫秒
21.
Journal of Plant Research - Chloroplast-localized NAD kinase (NADK2) is responsible for the production of NADP+, which is an electron acceptor in the linear electron flow of photosynthesis. The...  相似文献   
22.
Abstract

Background: Cerebral small vessel disease (CSVD) is associated with future stroke. Although pathological alteration in small vessels of patients with CSVD can be detected by neuroimaging, diagnosis of CSVD is delayed because it is an asymptomatic disease. The stroke-prone spontaneously hypertensive rat (SHRSP) show similar pathological features to human CSVD and develop stroke-related symptoms with advancing age.

Objective: We investigated the time course of haematological parameters in Wistar rats and SHRSP.

Material and Methods: Blood cells were analysed using an automated haematological analyser.

Results: SHRSP develop stroke-related symptoms including onset of neurological symptoms, decreased body weight and blood brain barrier leakage between 12 and 14?weeks of age. Lymphocyte counts were gradually decreased at 3?weeks before development of stoke-related symptoms and then were further decreased after the development of stroke-related symptoms. The both mean platelet volume and large platelet ratio gradually increased at 3?weeks before the development of stoke-related symptoms. However, although SHRSP showed more microcytic red cells than Wistar rats, the trajectories of change in erythrocyte-related parameters were similar between Wistar rats and SHRSP.

Conclusion: Our pilot study suggests that alterations of lymphocyte count and platelet volume predictive indicators for asymptomatic CSVD and symptomatic stroke in SHRSP.  相似文献   
23.
24.
Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.  相似文献   
25.

Background

In animal groups such as herds, schools, and flocks, a certain distance is maintained between adjacent individuals, allowing them to move as a cohesive unit. Proximate causations of the cohesive and coordinated movement under dynamic conditions, however, have been poorly understood.

Methodology/Principal Findings

We established a novel and simple behavioral assay using pairs of small fish (medaka and dwarf pufferfish) by eliciting a simultaneous optomotor response (OMR). We demonstrated that two homospecific fish began to move cohesively and maintained a distance of 2 to 4 cm between them when an OMR was elicited simultaneously in the fish. The coordinated and cohesive movement was not exhibited under a static condition. During the cohesive movement, the relative position of the two fish was not stable. Furthermore, adult medaka exhibited the cohesive movement but larvae did not, despite the fact that an OMR could be elicited in larvae, indicating that this ability to coordinate movement develops during maturation. The cohesive movement was detected in homospecific pairs irrespective of body-color, sex, or albino mutation, but was not detected between heterospecific pairs, suggesting that coordinated movement is based on a conspecific interaction.

Conclusions/Significance

Our findings demonstrate that coordinated behavior between a pair of animals was elicited by a simultaneous OMR in two small fish. This is the first report to demonstrate induction of a schooling-like movement in a pair of fish by an OMR and to investigate the effect of age, sex, body color, and species on coordination between animals under a dynamic condition.  相似文献   
26.
Variation in stable nitrogen isotope ratios (15N) was assessed for plants comprising two wetland communities, a bog-fen system and a flood plain, in central Japan. 15N of 12 species from the bog-fen system and six species from the flood plain were remarkably variable, ranging from –5.9 to +1.1 and from +3.1 to +8.7, respectively. Phragmites australis exhibited the highest 15N value at both sites. Rooting depth also differed greatly with plant species, ranging from 5cm to over 200cm in the bog-fen system. There was a tendency for plants having deeper root systems to exhibit higher 15N values; plant 15N was positively associated with rooting depth. Moreover, an increasing gradient of peat 15N was found along with depth. This evidence, together with the fact that inorganic nitrogen was depleted under a deep-rooted Phragmites australis stand, strongly suggests that deep-rooted plants actually absorb nitrogen from the deep peat layer. Thus, we successfully demonstrated the diverse traits of nitrogen nutrition among mire plants using stable isotope analysis. The ecological significance of deep rooting in mire plants is that it enables those plants to monopolize nutrients in deep substratum layers. This advantage should compensate for any consequential structural and/or physiological costs. Good evidence of the benefits of deep rooting is provided by the fact that Phragmites australis dominates as a tall mire grass.  相似文献   
27.
Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α+/Flk-1 population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α+/KDR population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α+/KDR population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.  相似文献   
28.
(R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.  相似文献   
29.
Vertebral columns were dissected and analyzed after birth with oral administration of silicon for 4 wk and for 8 wk. The silicon level was lower (20 μg/g) at the beginning. It remains unchanged after 4 wk and then increases twice as much as that for those mice bred for 8 wk than those bred for 4 wk. This increase depends remarkably on the mass ratio of Si/Ca (M/M). The ratio increases to three times higher than that of the control at the beginning of the experiments (5 wk after birth). Although the S and P contents appeared to be lower, these increased when Si was administered in combination with phosphopeptide. Other elements, such as Ca, Mg, Fe, and Zn, appeared to be unchanged as the weeks proceeded. These findings seem to support a proposal that silicon is necessary for the growth of backbones in mice.  相似文献   
30.
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号