首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   695篇
  免费   161篇
  2021年   9篇
  2017年   9篇
  2016年   7篇
  2015年   17篇
  2014年   17篇
  2013年   18篇
  2012年   19篇
  2011年   31篇
  2010年   16篇
  2009年   20篇
  2008年   17篇
  2007年   26篇
  2006年   25篇
  2005年   28篇
  2004年   26篇
  2003年   29篇
  2002年   25篇
  2001年   22篇
  2000年   35篇
  1999年   26篇
  1998年   19篇
  1997年   9篇
  1996年   8篇
  1994年   6篇
  1993年   10篇
  1992年   13篇
  1991年   21篇
  1990年   14篇
  1989年   14篇
  1988年   16篇
  1987年   10篇
  1986年   7篇
  1985年   13篇
  1984年   12篇
  1983年   16篇
  1982年   9篇
  1981年   10篇
  1980年   12篇
  1979年   19篇
  1978年   6篇
  1977年   16篇
  1976年   8篇
  1975年   14篇
  1974年   12篇
  1973年   15篇
  1972年   9篇
  1971年   12篇
  1969年   8篇
  1966年   9篇
  1963年   5篇
排序方式: 共有856条查询结果,搜索用时 250 毫秒
91.
Caenorhabditis elegans has been used as a host for the study of bacteria that cause disease in mammals. However, a significant limitation of the model is that C. elegans is not viable at 37 degrees C. We report that the gonochoristic nematode Panagrellus redivivus survives at 37 degrees C and maintains its life cycle at temperatures up to and including 31.5 degrees C. The C. elegans pathogens Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, but not Yersinia pseudotuberculosis, reduced P. redivivus lifespan. Of four strains of Burkholderia multivorans tested, one reduced P. redivivus lifespan at both temperatures, one was avirulent at both temperatures and two strains reduced P. redivivus lifespan only at 37 degrees C. The mechanism by which one of these strains killed P. redivivus at 37 degrees C, but not at 25 degrees C, was investigated further. Killing required viable bacteria, did not involve bacterial invasion of tissues, is unlikely to be due to a diffusible, bacterial toxin and was not associated with increased numbers of live bacteria within the intestine of the worm. We believe B. multivorans may kill P. redivivus by a temperature-regulated mechanism similar to B. pseudomallei killing of C. elegans.  相似文献   
92.
Glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) is ubiquitous biological tripeptide with multiple functions and possible therapeutic uses. The oxidized disulfide form (GSSG) self-assembles into fibrillar aggregates and gels in organic solvents, but not in solvent mixtures with high water content. Here, the disulfide bond has been replaced with a pyrenyl moiety in order to test the ability of GSH to direct noncovalent self-assembly in H2O, when combined with a hydrophobic driving force for aggregation. The resulting GSH-pyrene forms gels in 95% H2O:5% DMSO. The gamma-glutamyl group is critical for gelation, as it is with GSSG organo-gels, inasmuch as neither S-(pyrenyl)-cysteinyl-glycine nor the iodo-acetamido-pyrene precursor gels under any conditions studied. Circular dichroism and fluorescence spectroscopy indicate that the pyrene moieties cluster within the gels. Scanning and transmission electron microscopy reveal fibrous networks with individual strands of approximately 50-100 nm diameter. Saturation transfer difference (STD) NMR studies demonstrate that water interacts strongly with GSH-borne protons in both solution and gel states, but only the gels include water-pyrenyl interactions with significant residence times.  相似文献   
93.
Recent studies demonstrate roles for osteoprotegerin (OPG) in both skeletal and extra-skeletal tissues. Although its role in preventing osteoclast (OC) formation and activity is well documented, emerging evidence suggests a role of OPG in endothelial cell survival and the prevention of arterial calcification. In this communication, we show that vascular endothelial cells in situ, and human umbilical vein endothelial cells (HUVEC) in vitro, express abundant OPG. In HUVEC, OPG co-localizes with P-selectin and von Willebrand factor (vWF), within the Weibel-Palade bodies (WPB). Treatment of HUVEC with the pro-inflammatory cytokines, tumor necrosis factor (TNF)-alpha and IL-1beta, resulted in mobilization from the WPBs and subsequent secretion of OPG protein into the culture supernatant. Furthermore, TNF-alpha treatment of HUVEC resulted in a sustained increase in OPG mRNA levels and protein secretion over the 24-h treatment period. Reciprocal immunoprecipitation experiments revealed that while not associated with P-Selectin, OPG is physically complexed with vWF both within the WPB and following secretion from endothelial cells. Interestingly, this association was also identified in human peripheral blood plasma. In addition to its interaction with vWF, we show that OPG also binds with high avidity to the vWF reductase, thrombospondin (TSP-1), raising the intriguing possibility that OPG may provide a link between TSP-1 and vWF. In summary, the intracellular localization of OPG in HUVEC, in association with vWF, together with its rapid and sustained secretory response to inflammatory stimuli, strongly support a modulatory role in vascular injury, inflammation and hemostasis.  相似文献   
94.
Polyamine sensing during antizyme mRNA programmed frameshifting   总被引:8,自引:0,他引:8  
A key regulator of cellular polyamine levels from yeasts to mammals is the protein antizyme. The antizyme gene consists of two overlapping reading frames with ORF2 in the +1 frame relative to ORF1. A programmed +1 ribosomal frameshift occurs at the last codon of ORF1 and results in the production of full-length antizyme protein. The efficiency of frameshifting is proportional to the concentration of polyamines, thus creating an autoregulatory circuit for controlling polyamine levels. The mRNA recoding signals for frameshifting include an element 5' and a pseudoknot 3' of the shift site. The present work illustrates that the ORF1 stop codon and the 5' element are critical for polyamine sensing, whereas the 3' pseudoknot acts to stimulate frameshifting in a polyamine independent manner. We also demonstrate that polyamines are required to stimulate stop codon readthrough at the MuLV redefinition site required for normal expression of the GagPol precursor protein.  相似文献   
95.
While photoaffinity ligands (PALs) have been widely used to probe the structures of many receptors and transporters, their effective use in the study of membrane-bound cytochrome P450s is less established. Here, lapachenole has been used as an effective photoaffinity ligand of human P450 3A4, and mass spectrometry data demonstrating the efficient and specific photoaffinity labeling of CYP3A4 by this naturally occurring benzochromene compound is presented. Without photolysis, lapachenole is a substrate of CYP3A4 and can be metabolized to hydroxylated products by this enzyme. A high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) procedure was developed to analyze small amounts of intact purified CYP3A4, and analysis of the labeled protein showed the presence of one molecule of lapachenole bound per monomer of protein. Photolabeled CYP3A4 peptide adducts were further characterized by mass spectrometric analysis after proteolytic digestion and isolation of fluorescent photolabeled peptides. Two peptide adducts accounting for >95% of the labeled peptides were isolated by HPLC, and both peptides, ECYSVFTNR (positions 97-105) and VLQNFSFKPCK (positions 459-469), were identified by nano-LC/ESI quadrupole time-of-flight (QTOF) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The sites of modification were further localized to positions Cys-98 and Cys-468 for each peptide by nano-LC/ESI QTOF tandem mass spectrometry (MS/MS). The results provided the first direct evidence for interaction between the PAL and the putative B-B' loop region, which may serve as a substrate access channel or as a part of the CYP3A4 active site. In conclusion, benzochromene analogues are effective PALs, which may be used in the study of other cytochrome P450 structures.  相似文献   
96.
The discovery of programmed -1 frameshifting at the hexanucleotide shift site CGA_AAG, in addition to the classical X_XXY_YYZ heptanucleotide shift sequences, prompted a search for instances among eubacterial insertion sequence elements. IS1222 has a CGA_AAG shift site. A genetic analysis revealed that frameshifting at this site is required for transposition.  相似文献   
97.

Background  

Sepsis (bloodstream infection) is the leading cause of death in non-surgical intensive care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current understanding of sepsis is predominately observational and correlational, with only a partial and incomplete understanding of the physiological dynamics underlying the syndrome. There exists a need for dynamical models of sepsis progression, based upon basic physiologic principles, which could eventually guide hourly treatment decisions.  相似文献   
98.

Background  

While all codons that specify amino acids are universally recognized by tRNA molecules, codons signaling termination of translation are recognized by proteins known as class-I release factors (RF). In most eukaryotes and archaea a single RF accomplishes termination at all three stop codons. In most bacteria, there are two RFs with overlapping specificity, RF1 recognizes UA(A/G) and RF2 recognizes U(A/G)A.  相似文献   
99.
Lampe JN  Atkins WM 《Biochemistry》2006,45(40):12204-12215
Cytochrome P450 3A4 (CYP3A4) is a major enzymatic determinant of drug and xenobiotic metabolism that demonstrates remarkable substrate diversity and complex kinetic properties. The complex kinetics may result, in some cases, from multiple binding of ligands within the large active site or from an effector molecule acting at a distal allosteric site. Here, the fluorescent probe TNS (2-p-toluidinylnaphthalene-6-sulfonic acid) was characterized as an active site fluorescent ligand. UV-vis difference spectroscopy revealed a TNS-induced low-spin heme absorbance spectrum with an apparent K(d) of 25.4 +/- 2 microM. Catalytic turnover using 7-benzyloxyquinoline (7-BQ) as a substrate demonstrated TNS-dependent inhibition with an IC(50) of 9.9 +/- 0.1 microM. These results suggest that TNS binds in the CYP3A4 active site. The steady-state fluorescence of TNS increased upon binding to CYP3A4, and fluorescence titrations yielded a K(d) of 22.8 +/- 1 microM. Time-resolved frequency-domain measurement of TNS fluorescence lifetimes indicates a testosterone (TST)-dependent decrease in the excited-state lifetime of TNS, concomitant with a decrease in the steady-state fluorescence intensity. In contrast, the substrate erythromycin (ERY) had no effect on TNS lifetime, while it decreased the steady-state fluorescence intensity. Together, the results suggest that TNS binds in the active site of CYP3A4, while the first equivalent of TST binds at a distant allosteric effector site. Furthermore, the results are the first to indicate that TST bound to the effector site can modulate the environment of the heterotropic ligand.  相似文献   
100.
Cytochrome P450's (P450's) catalyze the oxidative metabolism of most drugs and toxins. Although extensive studies have proven that some P450's demonstrate both homotropic and heterotropic cooperativity toward a number of substrates, the mechanistic and molecular details of P450 allostery are still not well-established. Here, we use UV/vis and heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques to study the mechanism and thermodynamics of the binding of two 9-aminophenanthrene (9-AP) and testosterone (TST) molecules to the erythromycin-metabolizing bacterial P450(eryF). UV/vis absorbance spectra of P450(eryF) demonstrated that binding occurs with apparent negative homotropic cooperativity for TST and positive homotropic cooperativity for 9-AP with Hill-equation-derived dissociation constants of K(S) = 4 and 200 microM, respectively. The broadening and shifting observed in the 2D-{1H,15N}-HSQC-monitored titrations of 15N-Phe-labeled P450(eryF) with 9-AP and TST indicated binding on intermediate and fast chemical exchange time scales, respectively, which was consistent with the Hill-equation-derived K(S) values for these two ligands. Regardless of the type of spectral perturbation observed (broadening for 9-AP and shifting for TST), the 15N-Phe NMR resonances most affected were the same in each titration, suggesting that the two ligands "contact" the same phenylalanines within the active site of P450(eryF). This finding is in agreement with X-ray crystal structures of bound P450(eryF) showing different ligands occupying similar active-site niches. Complex spectral behavior was additionally observed for a small collection of resonances in the TST titration, interpreted as multiple binding modes for the low-affinity TST molecule or multiple TST-bound P450(eryF) conformational substates. A structural and energetic model is presented that combines the energetics and structural aspects of 9-AP and TST binding derived from these observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号