首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   161篇
  2021年   9篇
  2017年   9篇
  2016年   7篇
  2015年   17篇
  2014年   17篇
  2013年   18篇
  2012年   19篇
  2011年   31篇
  2010年   16篇
  2009年   20篇
  2008年   17篇
  2007年   26篇
  2006年   25篇
  2005年   28篇
  2004年   26篇
  2003年   29篇
  2002年   25篇
  2001年   22篇
  2000年   35篇
  1999年   26篇
  1998年   19篇
  1997年   9篇
  1996年   8篇
  1994年   6篇
  1993年   10篇
  1992年   13篇
  1991年   21篇
  1990年   14篇
  1989年   14篇
  1988年   16篇
  1987年   10篇
  1986年   7篇
  1985年   13篇
  1984年   12篇
  1983年   16篇
  1982年   9篇
  1981年   10篇
  1980年   12篇
  1979年   19篇
  1978年   6篇
  1977年   16篇
  1976年   8篇
  1975年   14篇
  1974年   12篇
  1973年   15篇
  1972年   9篇
  1971年   12篇
  1969年   8篇
  1966年   9篇
  1963年   5篇
排序方式: 共有857条查询结果,搜索用时 15 毫秒
61.
Mathematical models were developed to test the likelihood that large cytosolic adenylate concentration gradients exist across the bacteria-infected cells of legume nodules. Previous studies hypothesized that this may be the case to account for the unusually low adenylate energy charge (AEC; 0.65) measured in the plant fraction of metabolically active nodules (M.M. Kuzma, H. Winter, P. Storer, I. Oresnik, C.A. Atkins, D.B. Layzell [1999] Plant Physiol 119: 399-407). Simulations coupled leghemoglobin-facilitated O(2) diffusion into the infected cell, through bacteroid nitrogenase activity, with the ATP demand for transport and ammonia assimilation in the plant fraction of ureide- and amide-producing nodules. Although large cytosolic adenylate gradients were predicted to exist in both nodule types, amide nodules were predicted to have steeper AEC gradients (0.82-0.52) than ureide nodules (0.82-0.61). The differences were attributed to an additional ATP demand for Asn synthesis in the amide nodule. Simulations for nodules transferred to an Ar:O(2) atmosphere predicted a major reduction in the magnitude of adenylate gradients and an increase in the AEC of the plant fraction. Results were consistent with a number of experimental studies and were used to propose an experimental test of the models.  相似文献   
62.

Background  

Computer programs for the generation of multiple sequence alignments such as "Clustal W" allow detection of regions that are most conserved among many sequence variants. However, even for regions that are equally conserved, their potential utility as hybridization targets varies. Mismatches in sequence variants are more disruptive in some duplexes than in others. Additionally, the propensity for self-interactions amongst oligonucleotides targeting conserved regions differs and the structure of target regions themselves can also influence hybridization efficiency. There is a need to develop software that will employ thermodynamic selection criteria for finding optimal hybridization targets in related sequences.  相似文献   
63.
Flecainide (pKa 9.3, 99% charged at pH 7.4) and lidocaine (pKa 7.6-8.0, approximately 50% neutral at pH 7.4) have similar structures but markedly different effects on Na(+) channel activity. Both drugs cause well-characterized use-dependent block (UDB) of Na(+) channels due to stabilization of the inactivated state, but flecainide requires that channels first open before block develops, whereas lidocaine is believed to bind directly to the inactivated state. To test whether the charge on flecainide might determine its state specificity of Na(+) channel blockade, we developed two flecainide analogues, NU-FL (pKa 6.4), that is 90% neutral at pH 7.4, and a quaternary flecainide analogue, QX-FL, that is fully charged at physiological pH. We examined the effects of flecainide, NU-FL, QX-FL, and lidocaine on human cardiac Na(+) channels expressed in human embryonic kidney (HEK) 293 cells. At physiological pH, NU-FL, like lidocaine but not flecainide, interacts preferentially with inactivated channels without prerequisite channel opening, and causes minimal UDB. We find that UDB develops predominantly by the charged form of flecainide as evidenced by investigation of QX-FL at physiological pH and NU-FL investigated over a more acidic pH range where its charged fraction is increased. QX-FL is a potent blocker of channels when applied from inside the cell, but acts very weakly with external application. UDB by QX-FL, like flecainide, develops only after channels open. Once blocked, channels recover very slowly from QX-FL block, apparently without requisite channel opening. Our data strongly suggest that it is the difference in degree of ionization (pKa) between lidocaine and flecainide, rather than gross structural features, that determines distinction in block of cardiac Na(+) channels. The data also suggest that the two drugs share a common receptor but, consistent with the modulated receptor hypothesis, reach this receptor by distinct routes dictated by the degree of ionization of the drug molecules.  相似文献   
64.
Deletion of selenoprotein P alters distribution of selenium in the mouse   总被引:15,自引:0,他引:15  
Selenoprotein P (Se-P) contains most of the selenium in plasma. Its function is not known. Mice with the Se-P gene deleted (Sepp(-/-)) were generated. Two phenotypes were observed: 1) Sepp(-/-) mice lost weight and developed poor motor coordination when fed diets with selenium below 0.1 mg/kg, and 2) male Sepp(-/-) mice had sharply reduced fertility. Weanling male Sepp(+/+), Sepp(+/-), and Sepp(-/-) mice were fed diets for 8 weeks containing <0.02-2 mg selenium/kg. Sepp(+/+) and Sepp(+/-) mice had similar selenium concentrations in all tissues except plasma where a gene-dose effect on Se-P was observed. Liver selenium was unaffected by Se-P deletion except that it increased when dietary selenium was below 0.1 mg/kg. Selenium in other tissues exhibited a continuum of responses to Se-P deletion. Testis selenium was depressed to 19% in mice fed an 0.1 mg selenium/kg diet and did not rise to Sepp(+/+) levels even with a dietary selenium of 2 mg/kg. Brain selenium was depressed to 43%, but feeding 2 mg selenium/kg diet raised it to Sepp(+/+) levels. Kidney was depressed to 76% and reached Sepp(+/+) levels on an 0.25 mg selenium/kg diet. Heart selenium was not affected. These results suggest that the Sepp(-/-) phenotypes were caused by low selenium in testis and brain. They strongly suggest that Se-P from liver provides selenium to several tissues, especially testis and brain. Further, they indicate that transport forms of selenium other than Se-P exist because selenium levels of all tissues except testis responded to increases of dietary selenium in Sepp(-/-) mice.  相似文献   
65.
In addition to glutathione (GSH) conjugating activity, glutathione S-transferases (GSTs) catalyze "reverse" reactions, such as the hydrolysis of GSH thiol esters. Reverse reactions are of interest as potential tumor-directed pro-drug activation strategies and as mechanisms for tissue redistribution of carboxylate-containing drugs. However, the mechanism and specificity of GST-mediated GSH thiol ester hydrolysis are uncharacterized. Here, the GSH thiol esters of ethacrynic acid (E-SG) and several nonsteroidal antiinflammatory agents have been tested as substrates with human GSTs. The catalytic hydrolysis of these thiol esters appears to be a general property of GSTs. The hydrolysis of the thiol ester of E-SG was studied further with GSTA1-1 and GSTP1-1, as a model pro-drug with several possible fates for the hydrolysis products: competitive inhibition, covalent enzyme adduction, and sequential metabolism. In contrast to hydrolysis rates, significant isoform-dependent differences in the subsequent fate of the products ethacrynic acid and GSH were observed. At low [E-SG], only the GSTP1-1 efficiently catalyzed sequential metabolism, via a dissociative mechanism.  相似文献   
66.
The pKa of the catalytic Tyr-9 in glutathione S-transferase (GST) A1-1 is lowered from 10.3 to approximately 8.1 in the apoenzyme and approximately 9.0 with a GSH conjugate bound at the active site. However, a clear functional role for the unusual Tyr-9 pKa has not been elucidated. GSTA1-1 also includes a dynamic C terminus that undergoes a ligand-dependent disorder-to-order transition. Previous studies suggest a functional link between Tyr-9 ionization and C-terminal dynamics. Here we directly probe the role of Tyr-9 ionization in ligand binding and C-terminal conformation. An engineered mutant of rGSTA1-1, W21F/F222W, which contains a single Trp at the C terminus, was used as a fluorescent reporter of pH-dependent C-terminal dynamics. This mutant exhibited a pH-dependent change in Trp-222 emission properties consistent with changes in C-terminal solvation or conformation. The apparent pKa values for the conformational transition were 7.9 +/- 0.1 and 9.3 +/- 0.1 for the apoenzyme and ligand-bound enzyme, respectively, in excellent agreement with the pKa for Tyr-9 in these states. The Y9F/W21F/F222W mutant, however, exhibited no such pH-dependent changes. Time-resolved fluorescence anisotropy studies revealed a ligand-dependent, Tyr-9-dependent, change in the order parameter of Trp-222. However, no pH dependence was observed. In equilibrium and pre-steady-state ligand binding studies, product conjugate had a decreased equilibrium binding affinity (KD), concomitant with increased binding and dissociation rates, at higher pH values. Furthermore, the recovered pKa values for the pH-dependent microscopic rate constants ranged from 7.7 to 8.4, also in agreement with the pKa of Tyr-9. In contrast, the Y9F/W21F/F222W mutant had no pH-dependent transition in KD or rate constants for ligand binding or dissociation. The combined results indicate that the macroscopic populations of "open" and "closed" states of the C terminus are not determined solely by the ionization state of Tyr-9. However, the rates of transition between these states are faster for the ionized Tyr-9. The ionized Tyr-9 states provide a parallel pathway for product dissociation, which is kinetically and thermodynamically favored. In silico kinetic models further support the functional role for the parallel dissociation pathway provided by ionized Tyr-9.  相似文献   
67.
Twelve C-terminal residues of human glutathione S-transferase A1-1 form a helix in the presence of glutathione-conjugate, or substrate alone, and partly cover the active site. According to X-ray structures, the helix is disordered in the absence of glutathione, but it is not known if it is helical and delocalized, or in a random-coil conformation. Mutation to a tyrosine of residue 220 within this helix was previously shown to affect the pK(a) of Tyr-9 at the active site, in the apo form of the enzyme, and it was proposed that an on-face hydrogen bond between Tyr-220 and Tyr-9 provided a means for affecting this pK(a). In the current study, X-ray structures of the W21F and of the C-terminal mutation, W21F/F220Y, with glutathione sulfonate bound, show that the C-terminal helix is disordered (or delocalized) in the W21F crystal but is visible and ordered in a novel location, a crystal packing crevice, in one of three monomers in the W21F/F220Y crystal, and the proposed hydrogen bond is not formed. Fluorescence spectroscopy studies using an engineered F222W mutant show that the C-terminus remains delocalized in the absence of glutathione or when only the glutathione binding site is occupied, but is ordered and localized in the presence of substrate or conjugate, consistent with these and previous crystallographic studies. Proteins 2001;42:192-200.  相似文献   
68.
The cytochrome P450s (CYPs) are the major enzymatic detoxification and drug metabolism system. Recently, it has become clear that several CYP isoforms exhibit positive and negative homotropic cooperativity. However, the toxicological implications of allosteric kinetics have not been considered, nor understood. The allosteric kinetics are particularly enigmatic in several respects. In many cases, CYPs bioactivate substrates to more toxic products, thus making it difficult to rationalize a functional advantage for positive cooperativity. Also, CYPs exhibit cooperativity with many structurally diverse ligands, in marked contrast to the specificity observed with other allosteric systems. Here, kinetic simulations are used to compare the probabilistic time- and concentration-dependent integrated toxicity function during conversion of substrate to product for CYP models exhibiting Michaelis-Menten (non-cooperative) kinetics, positive cooperativity, or negative cooperativity. The results demonstrate that, at low substrate concentrations, the slower substrate turnover afforded by cooperative CYPs compared with Michaelis-Menten enzymes can be a significant toxicological advantage, when toxic thresholds exist. When present, the advantage results from enhanced "distribution" of toxin in two pools, substrate and product, for an extended period, thus minimizing the chance that either exceeds its toxic threshold. At intermediate concentrations, the allosteric kinetics can be a modest advantage or modest disadvantage, depending on the kinetic parameters. However, at high substrate concentrations associated with a high probability of toxicity, fast turnover is desirable, and this advantage is provided also by the cooperative enzymes. For the positive homotropic cooperativity, the allosteric kinetics minimize the probability of toxicity over the widest range of system parameters. Furthermore, this apparent functional cooperativity is achieved without specific molecular recognition that is the hallmark of "traditional" allostery.  相似文献   
69.
The suitability of proteome-based strategies for the targeting of tumor-associated markers along with further analysis regarding their clinical significance were investigated in human renal cell carcinoma (RCC). The immunogenic protein expression profile of normal kidney and RCC cell lines was studied by proteome analysis combined with immunoblotting using sera from healthy donors and RCC patients, also termed PROTEOMEX. Employing this approach, a series of proteins reactive with either RCC patient sera and/or reactive with control sera were identified by microanalysis of tryptic peptides. Some of these candidate antigens represent members of the cytoskeletal family, such as cytokeratins, in particular cytokeratin 8, cytoskeletal tropomyosin, F-actin capping protein, gamma-actin, stathmin, tubulin-alpha, tubulin-beta and vimentin. The expression pattern and clinical significance of three of these antigens, namely cytokeratin 8, stathmin and vimentin, were further analyzed in a large series of surgically removed RCC lesions of distinct subtypes. A heterogeneous expression pattern of cytokeratin 8, stathmin and vimentin was demonstrated in the different RCC subtypes. All epithelial cells of the autologous normal kidney showed a strong cytokeratin 8 staining pattern, whereas they totally lack vimentin expression. Stathmin was expressed in 10% of tubule cells. In conclusion, PROTEOMEX could be employed for the identification of tumor-associated antigens of the cytoskeleton which are differentially expressed in RCC of distinct subtypes as well as in normal renal epithelium.  相似文献   
70.
Redefinition of UAG, UAA and UGA to specify a standard amino acid occurs in response to recoding signals present in a minority of mRNAs. This ‘read-through’ is in competition with termination and is utilized for gene expression. One of the recoding signals known to stimulate read-through is a hexanucleotide sequence of the form CARYYA 3′ adjacent to the stop codon. The present work finds that of the 91 unique viral sequences annotated as read-through, 90% had one of six of the 64 possible codons immediately 3′ of the read-through stop codon. The relative efficiency of these read-through contexts in mammalian tissue culture cells has been determined using a dual luciferase fusion reporter. The relative importance of the identity of several individual nucleotides in the different hexanucleotides is complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号