首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   3篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2015年   8篇
  2014年   4篇
  2013年   7篇
  2012年   13篇
  2011年   12篇
  2010年   6篇
  2009年   7篇
  2008年   14篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有142条查询结果,搜索用时 62 毫秒
91.
The novel adipokine chemerin has been related to insulin-resistant states such as obesity and non alcoholic fatty liver disease (NAFLD). However, its association with insulin resistance and beta cell function remains controversial. The main objective was to examine whether serum chemerin levels associate with insulin sensitivity and beta cell function independently of body mass index (BMI), by studying consecutive outpatients of the hepatology clinics of a European university hospital. Individuals (n=196) with NAFLD were stratified into persons with normal glucose tolerance (NGT; n=110), impaired glucose tolerance (IGT; n=51) and type 2 diabetes (T2D; n=35) and the association between serum chemerin and measures of insulin sensitivity and beta cell function as assessed during fasting and during oral glucose tolerance test (OGTT) was measured. Our results showed that serum chemerin positively associated with BMI (P=0.0007) and C peptide during OGTT (P<0.004), but not with circulating glucose, insulin, lipids or liver enzymes (all P>0.18). No BMI independent relationships of chemerin with fasting and OGTT derived measures of insulin sensitivity were found (P>0.5). Chemerin associated positively with fasting beta cell function as well as the OGTT derived insulinogenic index IGI_cp and the adaptation index after adjustment for age, sex and BMI (P=0.002-0.007), and inversely with the insulin/C peptide ratio (P=0.007). Serum chemerin neither related to the insulinogenic index IGI_ins nor the disposition index. In conclusion, circulating chemerin is likely linked to enhanced beta cell function but not to insulin sensitivity in patients with NAFLD.  相似文献   
92.
Protein-protein interactions mediate a vast number of cellular processes. Here, we present a regulatory mechanism in protein-protein interactions mediated by finely tuned structural instability and coupled with molecular mimicry. We show that a set of type III secretion (TTS) autoinhibited homodimeric chaperones adopt a molten globule-like state that transiently exposes the substrate binding site as a means to become rapidly poised for binding to their cognate protein substrates. Packing defects at the homodimeric interface stimulate binding, whereas correction of these defects results in less labile chaperones that give rise to nonfunctional biological systems. The protein substrates use structural mimicry to offset the weak spots in the chaperones and to counteract their autoinhibitory conformation. This regulatory mechanism of protein activity is evolutionarily conserved among several TSS systems and presents a lucid example of functional advantage conferred upon a biological system by finely tuned structural instability.  相似文献   
93.
Biological systems demonstrate asymmetry, while lateralization has been observed from humans to lower animals structurally, functionally and behaviorally. This may be derived from evolutionary, genetic, developmental, epigenetic and pathologic factors. However, brain structure and function is complex, and macroscopic or microscopic asymmetries are hard to discern from random fluctuations. In this article, we discuss brain laterality and lateralization, beginning with a brief review of the literature on brain structural and functional asymmetries. We conclude with methods to detect and quantify asymmetry, focusing on neuroproteomics, for retrieval of protein-expression patterns, as a method of diagnosis and treatment monitoring. We suggest inter-hemispheric differential proteomics as a valid method to assess the experimental and biological variations in the healthy brain, and neurologic and neuropsychiatric disorders.  相似文献   
94.
Culture-dependent and -independent approaches were employed to identify the bacterial community structure from olive-mill wastewater produced from three olive-fruit varieties. The 233 bacterial isolates recovered were phylogenetically related to 38 members of Firmicutes, Actinobacteria, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, and Bacteroidetes. Employing a novel microarray-based approach (PhyloChip) a high bacterial diversity was revealed consisting of 18 different phyla with representatives from 99 different families. The bacterial diversity in olive-mill wastewater from the three olive tree varieties was dominated by α-, β-, γ-, δ-, ε-Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Cyanobacteria, and Actinobacteria. This in-depth analysis of the indigenous microbiota indicated a cultivar-specific bacterial profile. Interestingly, the common bacterial taxa present in all three varieties examined were restricted indicating that the bacterial communities present in the olive-mill wastewater are greatly influenced by the olive-fruit variety.  相似文献   
95.
SRPK1 (serine-arginine protein kinase 1) is a protein kinase that specifically phosphorylates proteins containing serine-arginine-rich domains. Its substrates include a family of SR proteins that are key regulators of mRNA AS (alternative splicing). VEGF (vascular endothelial growth factor), a principal angiogenesis factor contains an alternative 3' splice site in the terminal exon that defines a family of isoforms with a different amino acid sequence at the C-terminal end, resulting in anti-angiogenic activity in the context of VEGF165-driven neovascularization. It has been shown recently in our laboratories that SRPK1 regulates the choice of this splice site through phosphorylation of the splicing factor SRSF1 (serine/arginine-rich splicing factor 1). The present review summarizes progress that has been made to understand how SRPK1 inhibition may be used to manipulate the balance of pro- and anti-angiogenic VEGF isoforms in animal models in vivo and therefore control abnormal angiogenesis and other pathophysiological processes in multiple disease states.  相似文献   
96.
Mutations of the ankyrin-repeat protein Inversin, a member of a diverse family of more than 12 proteins, cause nephronophthisis (NPH), an autosomal recessive cystic kidney disease associated with extra-renal manifestations such as retinitis pigmentosa, cerebellar aplasia and situs inversus. Most NPH gene products (NPHPs) localize to the cilium, and appear to control the transport of cargo protein to the cilium by forming functional networks. Inversin interacts with NPHP1 and NPHP3, and shares with NPHP4 the ability to antagonize Dishevelled-stimulated canonical Wnt signaling, potentially through recruitment of the Anaphase Promoting Complex (APC/C). However, Dishevelled antagonism may be confined towards the basal body, thereby polarizing motile cilia on the cells of the ventral node and respiratory tract. Inversin is essential for recruiting Dishevelled to the plasma membrane in response to activated Frizzled, a crucial step in planar cell polarity signaling. During vertebrate pronephros development, the Inversin-mediated translocation of Dishevelled appears to orchestrate the migration of cells and differentiation of segments that correspond to the mammalian loop of Henle. Thus, defective tubule migration and elongation may contribute to concentration defects and cause cyst formation in patients with NPH.  相似文献   
97.
A series of 2-dialkylamino-N-(4-substituted thiazolyl-2)acetamides and 3-dialkylamino-N-(4-substituted thiazolyl-2)propionamides were synthesized and evaluated for their anti-inflammatory activity. Encouraging results led us to investigate the effect of these compounds on NO production and GAGs release. Their effects were evaluated in vitro on the metabolism of pig cartilage, treated with IL-1beta. The amount of glycosaminoglycans (GAGs) and the production of nitric oxide (NO) in the culture medium were determined. The results, obtained, showed that all compounds, in the presence of IL-1beta, blocked the cartilage breakdown, with different behavior. A quantitative structure-activity relationship (QSAR) study was performed.  相似文献   
98.
Numerous studies have provided evidence of diameter adaptation secondary to flow-overload, but with ambiguous findings vis à vis other morphological parameters and information on the biomechanical aspects of arterial adaptation is rather incomplete. We examined the time course of large-artery biomechanical adaptation elicited by long-term flow-overload in a porcine shunt model between the carotid artery and ipsilateral jugular vein. Post-shunting, the proximal artery flow was doubled and retained so until euthanasia (up to three months post-operatively), without pressure change. This hemodynamic stimulus induced lumen diameter enlargement, accommodated by elastin fragmentation and connective tissue accumulation, as witnessed by optical and confocal microscopy. Heterogeneous mass growth of the adventitia was observed at the expense of the media, associated with declining residual strains and opening angle at three months. The in vitro elastic properties of shunted arteries determined by inflation/extension testing were also modified, with the thickness-pressure curves shifted to larger thicknesses and the diameter-pressure curves shifted to larger diameters at physiologic pressures, resulting in normalization of intramural and shear stresses within fifteen and thirty days, respectively. We infer that the biomechanical adaptation in moderate flow-overload leads to normalization of intimal shear, without, however, restoring compliance and distensibility at mean in vivo pressure to control levels.  相似文献   
99.
The photosystem II core complex is the water:plastoquinone oxidoreductase of oxygenic photosynthesis situated in the thylakoid membrane of cyanobacteria, algae and plants. It catalyzes the light-induced transfer of electrons from water to plastoquinone accompanied by the net transport of protons from the cytoplasm (stroma) to the lumen, the production of molecular oxygen and the release of plastoquinol into the membrane phase. In this review, we outline our present knowledge about the "acceptor side" of the photosystem II core complex covering the reaction center with focus on the primary (Q(A)) and secondary (Q(B)) quinones situated around the non-heme iron with bound (bi)carbonate and a comparison with the reaction center of purple bacteria. Related topics addressed are quinone diffusion channels for plastoquinone/plastoquinol exchange, the newly discovered third quinone Q(C), the relevance of lipids, the interactions of quinones with the still enigmatic cytochrome b559 and the role of Q(A) in photoinhibition and photoprotection mechanisms. This article is part of a Special Issue entitled: Photosystem II.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号