首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   19篇
  国内免费   1篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   2篇
  2019年   11篇
  2018年   12篇
  2017年   8篇
  2016年   15篇
  2015年   16篇
  2014年   26篇
  2013年   30篇
  2012年   25篇
  2011年   24篇
  2010年   14篇
  2009年   15篇
  2008年   19篇
  2007年   16篇
  2006年   23篇
  2005年   20篇
  2004年   10篇
  2003年   8篇
  2002年   12篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
  1973年   2篇
  1962年   1篇
  1961年   1篇
排序方式: 共有351条查询结果,搜索用时 984 毫秒
151.
Because systems controlled by basal NAD(P)H oxidase activity appear to contribute to differences in responses of endothelium-removed bovine coronary (BCA) and pulmonary (BPA) arteries to hypoxia, we characterized the Nox oxidases activities present in these vascular segments and how cytosolic NAD(P)H redox systems could be controlling oxidase activity. BPA generated approximately 60-80% more lucigenin (5 microM) chemiluminescence detectable superoxide than BCA. Apocynin (10 microM), a NAD(P)H oxidase inhibitor, and 6-aminonicotinamide (1 mM), a pentose phosphate inhibitor (PPP), both attenuated (approximately by 50-70%) superoxide detected in BPA and BCA. There was no significant difference in the expression of Nox2 or Nox4 mRNA or protein detected by Western blot analysis. NADPH and NADH increased superoxide in homogenates and isolated microsomal membrane fractions in a manner consistent with BPA and BCA having similar levels of oxidase activity. BPA had 4.2-fold higher levels of NADPH than BCA. The activity and protein levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting PPP enzyme generating cytosolic NADPH, were 1.5-fold higher in BPA than BCA. Thus BPA differ from BCA in that they have higher levels of G6PD activity, NADPH, and superoxide. Because both arteries have similar levels of Nox expression and activity, elevated levels of cytosolic NADPH may contribute to increased superoxide in BPA.  相似文献   
152.
Five grasses of tribe Aveneae were collected from low (1100 m.a.s.l.) and highland (2300 m.a.s.l.) mountain range of Western Himalaya, Neelum Valley, to evaluate the physio-anatomical adaptations to altitudinal variability. An evidence to confirm the hypothesis that plants vegetating different altitudes must be different structurally (internal modifications) and functionally due to heterogeneity in environmental gradients. The general response of all grasses to high altitude was growth retardation in terms of total leaf area per plant and dry matter. With exception of Ca2+ content, most of the ionic and chlorophyll content were significantly low at high elevations. Anatomical alterations such as, leaf thickness, intensive sclerification around the vascular bundle and pith area, reduced metaxylem vessel area, high pubescence (increased microhair and trichome density) played an important role in high degree of tolerance of these grasses to cope with altitudinal stresses. The mechanical strength of leaf, which is critical for preventing damage under harsh climate and overall survival of high altitudinal populations, seems to be depended on intensity of sclerification and dense pubescence at abaxial and adaxial surfaces of the leaf. Increase in overall thickness of leaf in high altitude grasses in response to low temperature may protect metabolically active tissue like mesophyll. Also high density of trichomes may be involved in blocking transpiration water and internal heat. Differential response of low and high altitude grasses is highly related to air temperature, pattern of rainfall, and availability of nutrients.  相似文献   
153.
C1q contains three globular domains (C1qgD) that are the key functional component of the classical complement system. C1qgD can interact with important immune molecules, including IgG and C‐reactive protein (CRP) to form defense systems to protect animals. Here, the first non‐mammalian structure, zebrafish C1qA globular domain (Dare‐C1qAgD) was solved. Although the overall architecture of Dare‐C1qAgD is similar to human C1qA, residues involved in C1qBgD, C1qCgD, and CRP binding are somewhat different while residues involved in IgG binding are not present in zebrafish. The structure gives insight into how human and fish C1qA evolved from an ancestral protein.  相似文献   
154.
Background and aimsBreast cancer is the most common cancer in women and the second leading cause of cancer-related deaths in this population. Breast cancer related deaths have declined due to screening and adjuvant therapies, yet a driving clinical need exists to better understand the cause of the deadliest aspect of breast cancer, metastatic disease. Breast cancer metastasizes to several distant organs, the liver being the third most common site. To date, very few murine models of hepatic breast cancer exist.MethodsIn this study, a novel murine model of liver breast cancer using the MDA-MB-231 cell line is introduced as an experimental (preclinical) model.ResultsHistological typing revealed consistent hepatic breast cancer tumor foci. Common features of the murine model were vascular invasion, lung metastasis and peritoneal seeding.ConclusionsThe novel murine model of hepatic breast cancer established in this study provides a tool to be used to investigate mechanisms of hepatic metastasis and to test potential therapeutic interventions.  相似文献   
155.
Summary We have studied the genetic linkage of two markers, the apolipoprotein C1 (APOC1) gene and a cytochrome P450 (CYP2A) gene, in relation to the gene for myotonic dystrophy (DM). A peak lod score of 9.29 at 2 cM was observed for APOC1-DM, with a lod score of 8.55 at 4cM for CYP2A-DM. These two markers also show close linkage to each other ( max = 0.05, Z max = 9.09). From examination of the genotypes of the recombinant individuals, CYP2A appears to map proximal to DM because in one recombinant individual CYP2A, APOC2 and CKMM had all recombined with DM. Evidence from another CYP2A-DM recombinant individual places CYP2A proximal to APOC2 and CKMM. Localisation of CYP2A on a panel of somatic cell hybrids also suggests that it is proximal to DM and APOC2/C1/E gene cluster.  相似文献   
156.
Members of an international consortium for linkage analysis of the facioscapulohumeral muscular dystrophy (FSHD) gene have pooled data for joint analyses, in an attempt to determine the precise location of the FSHD gene and the order of four DNA markers on 4q35 region. Six laboratories determined a total of 3,078 genotypes in 65 families, consisting of a total of 504 affected subjects and 559 unaffected subjects. For each marker, a mean of 648 meioses were informative. D4S139 and D4S163 were identified as the closest linked markers to the FSHD locus, with 99% upper confidence intervals of recombination fractions of .08 and .10, respectively. We have used the CRI-MAP program to construct the most likely order of cen-D4S171-F11-D4S163-D4S139-FSHD-tel, with favorable odds of 10(8)-10(114) over all other orders except that in which F11 and D4S171 are reversed, for which the odds ratio was 191:1. With this order, the genetic map of this region extends 25.5 cM in males and 13.8 cM in females (averaging 19.5 cM for sexes combined); the sex difference was statistically significant (P = .0013). Comparison between families for the two-point and multipoint lod scores involving FSHD showed no evidence for heterogeneity of this disorder. However, after the completion of this analysis, one large family which might show heterogeneity was identified. In view of this and the fact that all of the linked markers reside on the same side of the FSHD locus, the clinical application of these markers is not recommended at this time.  相似文献   
157.
An assay that measures the reduced, oxidized, and protein-bound forms of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma is described. Oxidized and protein-bound thiols are converted to their reduced counterparts by the use of NaBH4, and, following derivatization with monobromobimane (mBrB), the thiol-bimane adducts are quantified by reversed-phase ion-pair liquid chromatography and fluorescence detection. The presence of 50 microM dithioerythritol provides linearity of the standard curves at very low thiol concentrations. Selective determination of the oxidized forms was accomplished by blocking free sulfhydryl groups with N-ethylmaleimide (NEM) and excess NEM is inactivated by the subsequent addition of NaBH4. The reduced forms of the thiols in plasma were trapped with minimal oxidation by derivatizing blood samples at the time of collection. This was attained by drawing blood directly into tubes containing isotonic solutions of mBrB or NEM. The assay is sufficiently sensitive (less than 2 pmol) to detect the various forms of the four thiol compounds in human plasma. The analytical recovery of cysteine, cysteinylglycine, homocysteine, and glutathione was close to 100%, and the within-day precision corresponded to a coefficient of variation of 7, 8, 6, and 7%, respectively. The assay has been used to determine the various forms of the four thiol compounds in human plasma.  相似文献   
158.
CfAvr4, a chitin‐binding effector protein produced by the Dothideomycete tomato pathogen Cladosporium fulvum, protects the cell wall of this fungus against hydrolysis by secreted host chitinases during infection. However, in the presence of the Cf‐4 immune receptor of tomato, CfAvr4 triggers a hypersensitive response (HR), which renders the pathogen avirulent. Recently, several orthologues of CfAvr4 have been identified from phylogenetically closely related species of Dothideomycete fungi. Of these, DsAvr4 from Dothistroma septosporum also triggers a Cf‐4‐dependent HR, but CaAvr4 and CbAvr4 from Cercospora apii and Cercospora beticola, respectively, do not. All, however, bind chitin. To identify the region(s) and specific amino acid residue(s) of CfAvr4 and DsAvr4 required to trigger a Cf‐4‐dependent HR, chimeric and mutant proteins, in which specific protein regions or single amino acid residues, respectively, were exchanged between CfAvr4 and CaAvr4 or DsAvr4 and CbAvr4, were tested for their ability to trigger an HR in Nicotiana benthamiana plants transgenic for the Cf‐4 immune receptor gene. Based on this approach, a single region common to CfAvr4 and DsAvr4 was determined to carry a conserved proline residue necessary for the elicitation of this HR. In support of this result, a Cf‐4‐dependent HR was triggered by mutant CaAvr4 and CbAvr4 proteins carrying an arginine‐to‐proline substitution at this position. This study provides the first step in deciphering how Avr4 orthologues from different Dothideomycete fungi trigger a Cf‐4‐dependent HR.  相似文献   
159.
160.
In the last decades, extensive research on the effects of nano-TiO2 on plant systems and different microorganisms has confirmed its photocatalytic and antimicrobial activity. However, there is no report on its application in plant cell and tissue culture as well as its role in eliminating contaminating microorganisms in tissue culture. In this work, barley mature embryos were cultured in Murashige and Skoog medium with four concentrations (0, 10, 30, 60???g/ml) of TiO2 suspension in four repetitions. Quantitative and qualitative characteristics of calli were analyzed after each subculture. Data analysis for calli number in the first culture and callus size in all three cultures showed that the effect of treatment was significant at p?>?0.95. As a result, quantitative features such as callus color, shape, embryogenesis, etc. were completely similar in both control and TiO2 nanoparticle treatments; there is no doubt that TiO2 nanoparticles could dramatically increase callugenesis and the size of calli. As well, TiO2 nanoparticles are effective bactericides with an aseptic effect, causing no negative change in the quality of the callus. It is necessary to do more complementary works to identify mechanisms involved for the increased calli size and embryogenesis of explants in darkness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号