首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   38篇
  国内免费   2篇
  2023年   10篇
  2022年   11篇
  2021年   17篇
  2020年   10篇
  2019年   10篇
  2018年   14篇
  2017年   8篇
  2016年   23篇
  2015年   28篇
  2014年   26篇
  2013年   42篇
  2012年   48篇
  2011年   74篇
  2010年   46篇
  2009年   31篇
  2008年   50篇
  2007年   53篇
  2006年   31篇
  2005年   36篇
  2004年   33篇
  2003年   14篇
  2002年   21篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1963年   1篇
排序方式: 共有677条查询结果,搜索用时 181 毫秒
611.
Single nucleotide polymorphisms (SNPs) provide an important tool for cultivar identification in studies of genetic diversity, but until now, the time-consuming and costly nature of DNA sequencing has limited the identification of new markers. Herein, we describe the application of high-resolution melting (HRM), a recent enhancement to traditional DNA melting analysis, for the characterization of polymerase chain reaction products and the identification of nine gene-based SNPs for distinguishing the main Greek sweet cherry cultivars. The expected heterozygosity value of nine SNPs averaged at 0.518. The combined power of discrimination for the SNP markers was 0.999969. The ability of HRM to accurately discern nucleotide changes in a DNA sequence makes it a cost- and time-effective alternative to traditional sequencing for the detection of gene-based SNPs.  相似文献   
612.

Background

High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement.

Methodology/Principal Findings

To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality ‘naïve’ mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency (‘stemness’) genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment.

Conclusions/Significance

The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization.  相似文献   
613.
Climate and land use changes are major threats to biodiversity. To preserve biodiversity, networks of protected areas have been established worldwide, like the Natura 2000 network across the European Union (EU). Currently, this reserve network consists of more than 26000 sites covering more than 17% of EU terrestrial territory. Its efficiency to mitigate the detrimental effects of land use and climate change remains an open research question. Here, we examined the potential current and future geographical ranges of four birds of prey under scenarios of both land use and climate changes. By using graph theory, we examined how the current Natura 2000 network will perform in regard to the conservation of these species. This approach determines the importance of a site in regard to the total network and its connectivity. We found that sites becoming unsuitable due to climate change are not a random sample of the network, but are less connected and contribute less to the overall connectivity than the average site and thus their loss does not disrupt the full network. Hence, the connectivity of the remaining network changed only slightly from present day conditions. Our findings highlight the need to establish species-specific management plans with flexible conservation strategies ensuring protection under potential future range expansions. Aquila pomarina is predicted to disappear from the southern part of its range and to become restricted to northeastern Europe. Gyps fulvus, Aquila chrysaetos, and Neophron percnopterus are predicted to locally lose some suitable sites; hence, some isolated small populations may become extinct. However, their geographical range and metapopulation structure will remain relatively unaffected throughout Europe. These species would benefit more from an improved habitat quality and management of the existing network of protected areas than from increased connectivity or assisted migration.  相似文献   
614.
A polyphenolic mixture derived from sesame-seed perisperm (SSP) strongly reduced the mutagenicity of hydrogen peroxide (H(2)O(2)), sodium azide (NaN(3)), and benzo[a]pyrene (BaP) in strains TA100 and/or TA98 of Salmonella typhimurium. It exhibited desmutagenic activity against H(2)O(2), BaP in TA98 and/or TA100 and biomutagenic activity (apparently by affecting the DNA-repair system) against NaN(3) in strain TA100. According to in vitro experiments the polyphenolic mixture inhibited the activity of the CYP1A1 (EROD) enzyme responsible for the activation of BaP in the Ames' test, as well as that of the cytosolic enzyme GST. A cytosolic fraction from liver of male Wistar rats treated with either 20% SSP in the food, or 3mg or 6 mg of polyphenolic mixture/20 g food/day for a time period of 8 weeks reduced the mutagenic potential of BaP in strains TA100 and TA98, with the cytosolic fraction from rats treated with SSP causing the strongest reduction. Furthermore, a microsomal fraction from the 20% SSP-treated rats inhibited the mutagenicity of BaP in strains TA100 (26.3%) and TA98 (23%). In contrast, a microsomal fraction from rats treated with 3mg of polyphenolic mixture stimulated the mutagenicity of BaP in TA100 but reduced it in TA98, while for the microsomal fraction from rats treated with 6 mg of polyphenolic mixture, these effects on TA100 and TA98 were reversed.  相似文献   
615.
Human angiotensin-I converting enzyme (ACE) is a central component of the renin-angiotensin system and a major target for cardiovascular therapies. The somatic form of the enzyme (sACE) comprises two homologous metallopeptidase domains (N and C), each bearing a zinc active site with similar but distinct substrate and inhibitor specificities. On the basis of the recently determined crystal structures of both ACE domains, we have studied their complexes with gonadotropin-releasing hormone (GnRH), which is cleaved releasing both the protected NH2- and COOH-terminal tripeptides. This is the first molecular modeling study of an ACE-peptide substrate complex that examines the structural basis of ACE's endopeptidase activity and offers novel insights into subsites that are distant from the obligatory binding site and were not identified in the crystal structures. Our data indicate that a bridging interaction between Arg500 of the N-domain and Arg8 of GnRH that involves a buried chloride ion may account for its role in the specificity of the N-domain for endoproteolytic cleavage of the substrate at the NH2-terminus in vitro. In support of this, the protected NH2-terminal dipeptide of GnRH exhibits stronger interactions than the protected COOH-terminal dipeptide with the N-domain of ACE. Further comparison of the models of ACE-substrate complexes promotes our understanding of how the two domains differ in their function and specificity and provides an extension of the pharmacophore model used for structure-based drug design up to the S7 subsite of the enzyme.  相似文献   
616.
Glioblastoma, (grade IV astrocytoma), is characterized by rapid growth and resistance to treatment. Identification of markers of aggressiveness in this tumor could represent new therapeutic targets. Interleukins (IL)-6 and IL-10 may be considered as possible candidates, regulating cell growth, resistance to chemotherapy and angiogenesis. ELISPOT method provides a useful tool for the determination of the exact cell number of peripheral lymphocytes secreting a specific cytokine. IL-6 and IL-10 secretion levels were determined using ELISPOT methodology in peripheral blood mononuclear cells of 18 patients with astrocytic neoplasms (3 grade II and 15 grade IV), in parallel with 18 healthy controls. Additionally, immunohistochemical expression of these two cytokines was performed in paraffin-embedded neoplastic tissue in 12 of these patients. The secretion of IL-6 from peripheral monocytes was significantly higher in glioma patients compared to controls (P = 0.0003). In addition, IL-10 secretion from peripheral mononuclear and tumor cells of glioma patients was also higher as compared to healthy controls (P = 0.0002). Based on immunohistochemical staining, IL-6 expression was localized in tumor cells and macrophages as well as in areas of large ischemic necrosis, while the major source of IL-10 expression in glioblastomas was the microglia/macrophage cells. It is suggested that IL-10 contributes to the progression of astrocytomas by suppressing the patient’s immune response, whereas IL-6 provides an additional growth advantage. This study demonstrates for the first time the usefulness of ELISPOT in estimating the secretion of IL-6 and IL-10 from peripheral blood and the correlation of their expression in neoplastic cells. Christina Piperi and Penelope Korkolopoulou have equally contributed to this work.  相似文献   
617.
618.
A variety of pulsed electromagnetic fields (PEMFs) have already been experimentally used, in an effort to promote wound healing. The aim of the present study was to investigate the effects of short duration PEMF on secondary healing of full thickness skin wounds in a rat model. Full thickness skin wounds, 2 by 2 cm, were surgically inflicted in two groups of male Wistar rats, 24 animals each. In the first group (experimental group - EG), the animals were placed and immobilized in a special constructed cage. Then the animals were exposed to a short duration PEMF for 20 min daily. In the second group (control group - CG), the animals were also placed and immobilized in the same cage for the same time, but not exposed to PEMF. On days 3, 6, 9, 12, 18, and 22, following the infliction of skin wounds, the size and healing progress of each wound were recorded and evaluated by means of planimetry and histological examination. According to our findings with the planimetry, there was a statistically significant acceleration of the healing rate for the first 9 days in EG, whereas a qualitative improvement of healing progress was identified by histological examination at all time points, compared to the control group.  相似文献   
619.

Background

Arterial and venous thrombosis may share common pathophysiology involving the activation of platelets and inflammatory mediators. A growing body of evidence suggests prothrombotic effect of renin angiotensin system (RAS) including vascular inflammation and platelet activation. We hypothesized that the use of angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) plays a role in protecting against venous thromboembolism (VTE) in patients atherosclerosis.

Methods

We conducted a retrospective study, reviewing 1,100 consecutive patients admitted to a teaching hospital with a diagnosis of either myocardial infarction or ischemic stroke from 2005 to 2010. Patients who had been treated with anticoagulation therapy before or after the first visit were excluded. The occurrence of VTE during the follow up period, risk factors for VTE on admission, and the use of ACEIs or ARBs during the follow up period were recorded.

Results

The mean age of the entire study population was 68.1 years. 52.0% of the patients were female and 76.5% were African American. 67.3% were on RAS inhibitorsThe overall incidence of VTE was 9.7% (n = 107). Among the RAS inhibitor users, the incidence of VTE events was 9.0% (54/603) for the ACEI only users, 7.1% (8/113) for the ARB only users, and 0% (0/24) for the patients taking combination of ACEI and ARB. Among patients on RAS inhibitors, 8.4% (62/740) developed a VTE, compared with 12.5% (45/360) in the nonuser group [HR (hazard ratio), 0.58; 95% CI (confidence interval), 0.39–0.84; P<0.01]. Even after controlling for factors related to VTE (smoking, history of cancer, and immobilization, hormone use) and diabetes, the use of RAS inhibitors was still associated with a significantly lower risk of developing VTE (AHR, 0.59; 95% CI, 0.40–0.88; P = 0.01).

Conclusions

The use of RAS inhibitors appears to be associated with a reduction in the risk of VTE.  相似文献   
620.
Disc degeneration is the most common cause of back pain in adults and has enormous socioeconomic implications. Conservative management is ineffective in most cases, and results of surgical treatment have not yet reached desirable standards. Biologic treatment options are an alternative to the above conventional management and have become very attractive in recent years. The present review highlights the currently available biologic treatment options in mild and moderate disc degeneration, where a potential for regeneration still exists. Biologic treatment options include protein-based and cell-based therapies. Protein-based therapies involve administration of biologic factors into the intervertebral disc to enhance matrix synthesis, delay degeneration or impede inflammation. These factors can be delivered by an intradiscal injection, alone or in combination with cells or tissue scaffolds and by gene therapy. Cell-based therapies comprise treatment strategies that aim to either replace necrotic or apoptotic cells, or minimize cell death. Cell-based therapies are more appropriate in moderate stages of degenerated disc disease, when cell population is diminished; therefore, the effect of administration of growth factors would be insufficient. Although clinical application of biologic treatments is far from being an everyday practice, the existing studies demonstrate promising results that will allow the future design of more sophisticated methods of biologic intervention to treat intervertebral disc degeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号