首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   663篇
  免费   37篇
  国内免费   2篇
  702篇
  2023年   10篇
  2022年   12篇
  2021年   18篇
  2020年   10篇
  2019年   11篇
  2018年   16篇
  2017年   9篇
  2016年   23篇
  2015年   30篇
  2014年   26篇
  2013年   41篇
  2012年   50篇
  2011年   77篇
  2010年   46篇
  2009年   34篇
  2008年   53篇
  2007年   54篇
  2006年   34篇
  2005年   40篇
  2004年   33篇
  2003年   13篇
  2002年   21篇
  2001年   4篇
  2000年   2篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1963年   1篇
排序方式: 共有702条查询结果,搜索用时 0 毫秒
31.
32.
Syntrophomonas wolfei is a specialist, evolutionarily adapted for syntrophic growth with methanogens and other hydrogen- and/or formate-using microorganisms. This slow-growing anaerobe has three putative ribosome RNA operons, each of which has 16S rRNA and 23S rRNA genes of different length and multiple 5S rRNA genes. The genome also contains 10 RNA-directed, DNA polymerase genes. Genomic analysis shows that S. wolfei relies solely on the reduction of protons, bicarbonate or unsaturated fatty acids to re-oxidize reduced cofactors. Syntrophomonas wolfei lacks the genes needed for aerobic or anaerobic respiration and has an exceptionally limited ability to create ion gradients. An ATP synthase and a pyrophosphatase were the only systems detected capable of creating an ion gradient. Multiple homologues for β-oxidation genes were present even though S. wolfei uses a limited range of fatty acids from four to eight carbons in length.Syntrophomonas wolfei, other syntrophic metabolizers with completed genomic sequences, and thermophilic anaerobes known to produce high molar ratios of hydrogen from glucose have genes to produce H(2) from NADH by an electron bifurcation mechanism. Comparative genomic analysis also suggests that formate production from NADH may involve electron bifurcation. A membrane-bound, iron-sulfur oxidoreductase found in S. wolfei and Syntrophus aciditrophicus may be uniquely involved in reverse electron transport during syntrophic fatty acid metabolism. The genome sequence of S. wolfei reveals several core reactions that may be characteristic of syntrophic fatty acid metabolism and illustrates how biological systems produce hydrogen from thermodynamically difficult reactions.  相似文献   
33.
In this article, we present a de novo method for predicting protein domain boundaries, called OPUS-Dom. The core of the method is a novel coarse-grained folding method, VECFOLD, which constructs low-resolution structural models from a target sequence by folding a chain of vectors representing the predicted secondary-structure elements. OPUS-Dom generates a large ensemble of folded structure decoys by VECFOLD and labels the domain boundaries of each decoy by a domain parsing algorithm. Consensus domain boundaries are then derived from the statistical distribution of the putative boundaries and three empirical sequence-based domain profiles. OPUS-Dom generally outperformed several state-of-the-art domain prediction algorithms over various benchmark protein sets. Even though each VECFOLD-generated structure contains large errors, collectively these structures provide a more robust delineation of domain boundaries. The success of OPUS-Dom suggests that the arrangement of protein domains is more a consequence of limited coordination patterns per domain arising from tertiary packing of secondary-structure segments, rather than sequence-specific constraints.  相似文献   
34.
35.
36.
Self-incompatibility, a common attribute of plant development, forms a classical paradigm of balancing selection in natural populations, in particular negative frequency-dependent selection. Under negative frequency-dependent selection population genetics theory predicts that the S-locus, being in command of self-incompatibility, keeps numerous alleles in equal frequencies demonstrating a wide allelic range. Moreover, while natural populations exhibit a higher within population genetic diversity, a reduction of population differentiation and increase of effective migration rate is expected in comparison to neutral loci. Allelic frequencies were investigated in terms of distribution and genetic structure at the gametophytic self-incompatibility locus in five wild cherry (Prunus avium L.) populations. Comparisons were also made between the differentiation at the S-locus and at the SSR loci. Theoretical expectations under balancing selection were congruent to the results observed. The S-locus showed broad multiplicity (16 S-alleles), high genetic diversity, and allelic isoplethy. Genetic structure at the self-incompatibility locus was almost four times lower than at 11 nSSR loci. Analysis of molecular variance revealed that only 5?% of the total genetic variation concerns differentiation among populations. In conclusion, the wealth of S-allelic diversity found in natural wild cherry populations in Greece is useful not only in advancing basic population genetics research of self-incompatibility systems in wild cherry but also in the development of breeding programs.  相似文献   
37.
38.
Childhood pilocytic astrocytoma is the most frequent brain tumor affecting children. Proteomics analysis is currently considered a powerful tool for global evaluation of protein expression and has been widely applied in the field of cancer research. In the present study, a series of proteomics, genomics, and bioinformatics approaches were employed to identify, classify and characterize the proteome content of low-grade brain tumors as it appears in early childhood. Through bioinformatics database construction, protein profiles generated from pathological tissue samples were compared against profiles of normal brain tissues. Additionally, experiments of comparative genomic hybridization arrays were employed to monitor for genetic aberrations and sustain the interpretation and evaluation of the proteomic data. The current study confirms the dominance of MAPK pathway for the childhood pilocytic astrocytoma occurrence and novel findings regarding the ERK-2 expression are reported.  相似文献   
39.
Polluted aquifers contain indigenous microbial communities with the potential for in situ bioremediation. However, the effect of hydrogeochemical gradients on in situ microbial communities (especially at the plume fringe, where natural attenuation is higher) is still not clear. In this study, we used culture-independent techniques to investigate the diversity of in situ planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Within the upper and lower plume fringes, denaturing gradient gel electrophoresis profiles indicated that planktonic community structure was influenced by the steep hydrogeochemical gradient of the plume rather than the spatial location in the aquifer. Under the same hydrogeochemical conditions (in the lower plume fringe, 30 m below ground level), 16S rRNA gene cloning and sequencing showed that planktonic and attached bacterial communities differed markedly and that the attached community was more diverse. The 16S rRNA gene phylogeny also suggested that a phylogenetically diverse bacterial community operated at this depth (30 mbgl), with biodegradation of phenolic compounds by nitrate-reducing Azoarcus and Acidovorax strains potentially being an important process. The presence of acetogenic and sulphate-reducing bacteria only in the planktonic clone library indicates that some natural attenuation processes may occur preferentially in one of the two growth phases (attached or planktonic). Therefore, this study has provided a better understanding of the microbial ecology of this phenol-contaminated aquifer, and it highlights the need for investigating both planktonic and attached microbial communities when assessing the potential for natural attenuation in contaminated aquifers.  相似文献   
40.
Osteoarthritis (OA) is the most common form of arthritis with still unknown pathogenic etiology and considerable contribution of genetic factors. Recently, a new emerging role of oxidative stress in the pathology of OA has been reported, lacking however elucidation of the underlying mechanism. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase being a complex enzyme produced by chondrocytes, presents the major source of reactive oxygen species and main contributor of increased oxidative stress. The present study aims to evaluate the association of NADPH oxidase p22phox gene C242T, A640G and ?A930G polymorphisms with primary knee OA in the Greek population. One hundred fifty five patients with primary symptomatic knee OA participated in the study along with 139 matched controls. Genotypes were determined using polymerase chain reaction and restriction fragment length polymorphism technique. Allelic and genotypic frequencies were compared between both study groups. NADPH p22phox ?A930G polymorphism was significantly associated with knee OA in the crude analysis (P = 0.018). No significant difference was detected for C242T and A640G polymorphisms (P > 0.05). The association between ?A930G polymorphism and knee OA disappeared when the results were adjusted for obesity (P = 0.078, odds ratio 0.54, 95 % CI 0.272–1.071). The interaction between all three polymorphisms was not significant. The present study shows that NADPH oxidase p22phox gene C242T, A640G and ?A930G polymorphisms are not risk factors for knee OA susceptibility in the Greek population. Further studies are needed to give a global view of the importance of this polymorphism in the pathogenesis of OA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号