首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   9篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   8篇
  2014年   6篇
  2013年   10篇
  2012年   15篇
  2011年   11篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   11篇
  2006年   3篇
  2005年   5篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有154条查询结果,搜索用时 765 毫秒
61.
62.

Background

Predicting disease causative genes (or simply, disease genes) has played critical roles in understanding the genetic basis of human diseases and further providing disease treatment guidelines. While various computational methods have been proposed for disease gene prediction, with the recent increasing availability of biological information for genes, it is highly motivated to leverage these valuable data sources and extract useful information for accurately predicting disease genes.

Results

We present an integrative framework called N2VKO to predict disease genes. Firstly, we learn the node embeddings from protein-protein interaction (PPI) network for genes by adapting the well-known representation learning method node2vec. Secondly, we combine the learned node embeddings with various biological annotations as rich feature representation for genes, and subsequently build binary classification models for disease gene prediction. Finally, as the data for disease gene prediction is usually imbalanced (i.e. the number of the causative genes for a specific disease is much less than that of its non-causative genes), we further address this serious data imbalance issue by applying oversampling techniques for imbalance data correction to improve the prediction performance. Comprehensive experiments demonstrate that our proposed N2VKO significantly outperforms four state-of-the-art methods for disease gene prediction across seven diseases.

Conclusions

In this study, we show that node embeddings learned from PPI networks work well for disease gene prediction, while integrating node embeddings with other biological annotations further improves the performance of classification models. Moreover, oversampling techniques for imbalance correction further enhances the prediction performance. In addition, the literature search of predicted disease genes also shows the effectiveness of our proposed N2VKO framework for disease gene prediction.
  相似文献   
63.
64.
65.
66.
The Casiopeínas® are mixed chelate copper (II) complexes and promising antineoplastics agents against cancer cells and tumors in vitro and in vivo. However, the action mode of these compounds is poorly characterized. In this work the effect of the antineoplastic Casiopeína IIIEa on the metabolism and ultrastructure of the yeast Saccharomyces cerevisiae was investigated. Exposure of cells growing in rich or in low-iron medium to 5 μM of the compound decreased duplication time and reduced oxygen consumption. Those cells formed smaller colonies when growing in a non-fermentable carbon source and low-iron medium, and under the light microscope, multiple folds were observed along the plasma membrane accompanied with a reduction in the diameter of the yeast. These observations were confirmed under the electron microscope, which also revealed a slight reduction of the mitochondrial size. A correlation was found with smaller colonies exhibiting lower rates of oxygen consumption, and yeast labelled with fluorescent MitoTrackerTM consistently exhibited reduced mitochondrial activity. It appears that Casiopeína IIIEa gives rise to smaller yeast and petite-like colonies by reducing the mitochondrial respiratory activity without significantly affecting the mitochondrial structure.  相似文献   
67.
68.
Acrylamide (ACR), used in many fields from industrial manufacturing to laboratory personnel work is also formed during the heating process through interactions of amino acids. Therefore ACR poses a significant risk to human health. This study aimed to elucidate whether resveratrol (RVT) treatment could modulate ACR-induced oxidative DNA damage and oxidative changes in rat brain, lung, liver, kidney and testes tissues. Rats were divided into four groups as control (C); RVT (30 mg/kg i.p. dissolved in 0.9% NaCl), ACR (40 mg/kg i.p.) and RVT + ACR groups. After 10 days rats were decapitated and tissues were excised. 8-hydroxydeoxyguanosine (8-OHdG) is a biomarker of oxidative DNA damage. 8-OHdG content in the extracted DNA solution was determined by enzyme-linked immunosorbent assay method. Malondialdehyde (MDA), glutathione (GSH) levels and myeloperoxidase activity (MPO) were determined in tissues, while oxidant-induced tissue fibrosis was determined by collagen contents. Serum enzyme activities, cytokine levels, leukocyte apoptosis were assayed in plasma. As an indicator of oxidative DNA damage, 8-OHdG levels significantly increased in ACR group and this was reversed significantly by RVT treatment. In ACR group, GSH levels decreased significantly while the MDA levels, MPO activity and collagen content increased in the tissues suggesting oxidative organ damage. In RVT-treated ACR group, oxidant responses reversed significantly. Serum enzyme activities, cytokine levels and leukocyte late apoptosis which increased following ACR administration, decreased with RVT treatment. Therefore supplementing with RVT can be useful in individuals at risk of ACR toxicity.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号