首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2703篇
  免费   289篇
  国内免费   1篇
  2023年   5篇
  2022年   23篇
  2021年   52篇
  2020年   19篇
  2019年   30篇
  2018年   43篇
  2017年   32篇
  2016年   74篇
  2015年   141篇
  2014年   140篇
  2013年   153篇
  2012年   227篇
  2011年   177篇
  2010年   132篇
  2009年   122篇
  2008年   169篇
  2007年   139篇
  2006年   118篇
  2005年   131篇
  2004年   133篇
  2003年   146篇
  2002年   113篇
  2001年   64篇
  2000年   49篇
  1999年   61篇
  1998年   44篇
  1997年   28篇
  1996年   34篇
  1995年   19篇
  1994年   29篇
  1993年   23篇
  1992年   23篇
  1991年   25篇
  1990年   30篇
  1989年   29篇
  1988年   16篇
  1987年   25篇
  1986年   18篇
  1985年   18篇
  1984年   6篇
  1983年   17篇
  1982年   8篇
  1981年   11篇
  1980年   5篇
  1979年   8篇
  1978年   11篇
  1977年   6篇
  1975年   5篇
  1968年   10篇
  1967年   8篇
排序方式: 共有2993条查询结果,搜索用时 15 毫秒
951.
952.
Neuronal sphingolipids (SL) play important roles during axonal extension, neurotrophic receptor signaling and neurotransmitter release. Many of these signaling pathways depend on the presence of specialized membrane microdomains termed lipid rafts. Sphingomyelin (SM), one of the main raft constituents, can be formed de novo or supplied from exogenous sources. The present study aimed to characterize fluorescently-labeled SL turnover in a murine neuronal cell line (CATH.a). Our results demonstrate that at 4 °C exogenously added BODIPY-SM accumulates exclusively at the plasma membrane. Treatment of cells with bacterial sphingomyelinase (SMase) and back-exchange experiments revealed that 55–67% of BODIPY-SM resides in the outer leaflet of the plasma membrane. Endocytosis of BODIPY-SM occurs via caveolae with part of internalized BODIPY-fluorescence ending up in the Golgi and the ER. Following endocytosis BODIPY-SM undergoes hydrolysis, a reaction substantially faster than BODIPY-SM synthesis from BODIPY-ceramide. RNAi demonstrated that both, acid (a)SMase and neutral (n)SMases contribute to BODIPY-SM hydrolysis. Finally, high-density lipoprotein (HDL)-associated BODIPY-SM was efficiently taken up by CATH.a cells. Our findings indicate that endocytosis of exogenous SM occurs almost exclusively via caveolin-dependent pathways, that both, a- and nSMases equally contribute to neuronal SM turnover and that HDL-like particles might represent physiological SM carriers/donors in the brain.  相似文献   
953.
Cardiac oxidative stress has been implicated in the pathogenesis of hypertrophy, cardiomyopathy and heart failure. Systemic deletion of the gene encoding adipose triglyceride lipase (ATGL), the enzyme that catalyzes the rate-limiting step of triglyceride lipolysis, results in a phenotype characterized by severe steatotic cardiac dysfunction. The objective of the present study was to investigate a potential role of oxidative stress in cardiac ATGL deficiency. Hearts of mice with global ATGL knockout were compared to those of mice with cardiomyocyte-restricted overexpression of ATGL and to those of wildtype littermates. Our results demonstrate that oxidative stress, measured as lucigenin chemiluminescence, was increased ~ 6-fold in ATGL-deficient hearts. In parallel, cytosolic NADPH oxidase subunits p67phox and p47phox were upregulated 4–5-fold at the protein level. Moreover, a prominent upregulation of different inflammatory markers (tumor necrosis factor α, monocyte chemotactant protein-1, interleukin 6, and galectin-3) was observed in those hearts. Both the oxidative and inflammatory responses were abolished upon cardiomyocyte-restricted overexpression of ATGL. Investigating the effect of oxidative and inflammatory stress on nitric oxide/cGMP signal transduction we observed a ~ 2.5-fold upregulation of soluble guanylate cyclase activity and a ~ 2-fold increase in cardiac tetrahydrobiopterin levels. Systemic treatment of ATGL-deficient mice with the superoxide dismutase mimetic Mn(III)tetrakis (4-benzoic acid) porphyrin did not ameliorate but rather aggravated cardiac oxidative stress. Our data suggest that oxidative and inflammatory stress seems involved in lipotoxic heart disease. Upregulation of soluble guanylate cyclase and cardiac tetrahydrobiopterin might be regarded as counterregulatory mechanisms in cardiac ATGL deficiency.  相似文献   
954.
Clathrin-mediated endocytosis (CME) regulates many aspects of plant development, including hormone signaling and responses to environmental stresses. Despite the importance of this process, the machinery that regulates CME in plants is largely unknown. In mammals, the heterotetrameric ADAPTOR PROTEIN COMPLEX-2 (AP-2) is required for the formation of clathrin-coated vesicles at the plasma membrane (PM). Although the existence of AP-2 has been predicted in Arabidopsis thaliana, the biochemistry and functionality of the complex is still uncharacterized. Here, we identified all the subunits of the Arabidopsis AP-2 by tandem affinity purification and found that one of the large AP-2 subunits, AP2A1, localized at the PM and interacted with clathrin. Furthermore, endocytosis of the leucine-rich repeat receptor kinase, BRASSINOSTEROID INSENSITIVE1 (BRI1), was shown to depend on AP-2. Knockdown of the two Arabidopsis AP2A genes or overexpression of a dominant-negative version of the medium AP-2 subunit, AP2M, impaired BRI1 endocytosis and enhanced the brassinosteroid signaling. Our data reveal that the CME machinery in Arabidopsis is evolutionarily conserved and that AP-2 functions in receptor-mediated endocytosis.  相似文献   
955.
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.  相似文献   
956.
Background aimsTo investigate the feasibility and safety of haploidentical natural killer (NK) cell infusions as consolidation immunotherapy after autologous stem cell transplant (ASCT) in patients with plasma cell myeloma.MethodsTen patients (median age, 59 years) received induction treatment followed by high-dose melphalan (200 mg/m2) at day –1, ASCT at day 0 and increasing NK cell doses (1.5 × 106, 1.5 × 107 and multiple doses of 1.0 × 108 cells/kg body weight) from day +1 to day +30 after ASCT. NK cells were harvested and purified from peripheral blood of haploidentical donors and expanded for 19 days with interleukin (IL)-2 and IL-15 under Good Manufacturing Practice conditions.ResultsNK cell numbers increased 56.0-fold (37.4- to 75.5-fold). Patients received a median of 3.8 × 108 (0.9–5.7 × 108) NK cells/kg body weight in six (three to eight) infusions. Multiparametric mass cytometry analysis demonstrated an altered surface receptor repertoire of expanded NK cells with increased degranulation and cytokine production activities but diminished expression of perforin. Donor NK cells were detectable in the peripheral blood, peaking 1 h after each dose (up to 90% donor NK cells). The treatment was safe and well tolerated, without evidence of graft-versus-host disease. Comparison with a control patient population receiving ASCT without NK cell infusions showed no significant difference in relapse, progression-free survival and overall survival.ConclusionsThis study demonstrates reliable manufacturing of high numbers of activated NK cells for multiple-dose infusions and safe administration of these cellular products. The trial was registered at ClinicalTrials.gov (identifier no. NCT01040026).  相似文献   
957.
958.
Genetic rearrangements involving the anaplastic lymphoma kinase (ALK) gene create oncogenic drivers for several cancers, including malignant peritoneal mesothelioma (MPeM). Here, we report genomic and functional precision oncology profiling on a rare case of a 5-year old patient diagnosed with wide-spread and aggressive MPeM, driven by STRN-ALK rearrangement. We established genomically representative patient-derived cancer cells (PDCs) from the tumor sample and performed high-throughput drug sensitivity testing with 527 oncology compounds to identify potent inhibitors. As expected, the PDCs were overall sensitive to the ALK inhibitors, although the eight different inhibitors tested had variable efficacy. We also discovered other effective inhibitors, such as MEK/ERK inhibitors and those targeting pathways downstream of ALK as well as Bcl-xl inhibitors. In contrast, most cytotoxic drugs were not very effective. ALK inhibitors synergized with MEK and PI3K/mTOR inhibitors, highlighting potential combinatorial strategies to enhance drug efficacy and tackle drug resistance. Based on genomic data and associated functional validation, the patient was treated with the ALK inhibitor crizotinib in combination with conventional chemotherapy (cisplatin and gemcitabine). A complete disease remission was reached, lasting now for over 3 years. Our results illustrate a rare pediatric cancer case, and highlight the potential of functional precision oncology to discover pathogenetic drivers, validate dependency on driver signals, compare different inhibitors against each other and potentially enhance targeted treatments by drug combinations. Such real-time implementation of functional precision oncology could pave the way towards safer and more effective personalized cancer therapies for individual pediatric cancer patients with rare tumors.  相似文献   
959.
Interleukin (IL)-7 is thought to be a non-redundant cytokine for lymphopoiesis as there is a reduction of T and B cells in peripheral blood (PB) and a loss of TCRγδ+ cells in PB and bone marrow (BM) in IL-7?/? mice. To investigate whether the absence of IL-7 influences the organ-dependent distribution of the lymphocytes, we analyzed single cell suspensions of several organs (BM, lung, liver, small intestine, and spleen) at different ages (three and 12 months) of IL-7+/+ and IL-7?/? mice using flow cytometry; immunohistochemical staining was performed on frozen sections of various organs. We observed lymphocytopenia in almost all organs of IL-7?/? mice, but normal counts in the liver and the lung of three-month-old IL-7?/? mice. CD4+ and CD8+ cell numbers were decreased in the spleen and the BM. With aging, we found a greater increase in CD4+ and CD8+ cells in the BM of IL-7?/? than in IL-7+/+ mice, particularly of memory cells. The spleen of IL-7?/? mice was characterized by lymphocytopenia. We challenge the view that IL-7 is a non-redundant cytokine for lymphocyte development. Some of the changes observed, e.g. partial absence of TCRγδ+ T cells in the PB, BM and small intestine and complete loss in liver, lung and spleen, may be due to the altered organ distribution instead of a defect in γδ+ T cell lymphopoiesis. In this model, aging leads to a significantly altered composition of lymphocyte subsets, and the lack of IL-7 seems to accelerate this process.  相似文献   
960.
The pathological hallmarks of bronchopulmonary dysplasia (BPD), one of the most common long-term pulmonary complications associated with preterm birth, include arrested alveolarization, abnormal vascular growth, and variable interstitial fibrosis. Severe BPD is often complicated by pulmonary hypertension characterized by excessive pulmonary vascular remodeling and right ventricular hypertrophy that significantly contributes to the mortality and morbidity of these infants. Connective tissue growth factor (CTGF) is a multifunctional protein that coordinates complex biological processes during tissue development and remodeling. We have previously shown that conditional overexpression of CTGF in airway epithelium under the control of the Clara cell secretory protein promoter results in BPD-like architecture in neonatal mice. In this study, we have generated a doxycycline-inducible double transgenic mouse model with overexpression of CTGF in alveolar type II epithelial (AT II) cells under the control of the surfactant protein C promoter. Overexpression of CTGF in neonatal mice caused dramatic macrophage and neutrophil infiltration in alveolar air spaces and perivascular regions. Overexpression of CTGF also significantly decreased alveolarization and vascular development. Furthermore, overexpression of CTGF induced pulmonary vascular remodeling and pulmonary hypertension. Most importantly, we have also demonstrated that these pathological changes are associated with activation of integrin-linked kinase (ILK)/glucose synthesis kinase-3β (GSK-3β)/β-catenin signaling. These data indicate that overexpression of CTGF in AT II cells results in lung pathology similar to those observed in infants with severe BPD and that ILK/GSK-3β/β-catenin signaling may play an important role in the pathogenesis of severe BPD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号