首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1874篇
  免费   145篇
  国内免费   1篇
  2023年   4篇
  2022年   22篇
  2021年   38篇
  2020年   14篇
  2019年   23篇
  2018年   34篇
  2017年   27篇
  2016年   60篇
  2015年   106篇
  2014年   123篇
  2013年   121篇
  2012年   189篇
  2011年   146篇
  2010年   102篇
  2009年   98篇
  2008年   129篇
  2007年   118篇
  2006年   92篇
  2005年   84篇
  2004年   98篇
  2003年   87篇
  2002年   84篇
  2001年   19篇
  2000年   16篇
  1999年   23篇
  1998年   27篇
  1997年   15篇
  1996年   20篇
  1995年   8篇
  1994年   11篇
  1993年   10篇
  1992年   7篇
  1991年   2篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1925年   1篇
排序方式: 共有2020条查询结果,搜索用时 31 毫秒
921.
922.

Background

Diapause or developmental arrest, is one of the major adaptations that allows mites and insects to survive unfavorable conditions. Diapause evokes a number of physiological, morphological and molecular modifications. In general, diapause is characterized by a suppression of the metabolism, change in behavior, increased stress tolerance and often by the synthesis of cryoprotectants. At the molecular level, diapause is less studied but characterized by a complex and regulated change in gene-expression. The spider mite Tetranychus urticae is a serious polyphagous pest that exhibits a reproductive facultative diapause, which allows it to survive winter conditions. Diapausing mites turn deeply orange in color, stop feeding and do not lay eggs.

Results

We investigated essential physiological processes in diapausing mites by studying genome-wide expression changes, using a custom built microarray. Analysis of this dataset showed that a remarkable number, 11% of the total number of predicted T. urticae genes, were differentially expressed. Gene Ontology analysis revealed that many metabolic pathways were affected in diapausing females. Genes related to digestion and detoxification, cryoprotection, carotenoid synthesis and the organization of the cytoskeleton were profoundly influenced by the state of diapause. Furthermore, we identified and analyzed an unique class of putative antifreeze proteins that were highly upregulated in diapausing females. We also further confirmed the involvement of horizontally transferred carotenoid synthesis genes in diapause and different color morphs of T. urticae.

Conclusions

This study offers the first in-depth analysis of genome-wide gene-expression patterns related to diapause in a member of the Chelicerata, and further adds to our understanding of the overall strategies of diapause in arthropods.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-815) contains supplementary material, which is available to authorized users.  相似文献   
923.
The island of Madagascar is a key hot spot for the genus Euphorbia, with at least 170 native species, almost all endemic. Threatened by habitat loss and illegal collection of wild plants, nearly all Malagasy Euphorbia are listed in CITES Appendices I and II. The absence of a reliable taxonomic revision makes it particularly difficult to identify these plants, even when fertile, and thereby compromises the application of CITES regulations. DNA barcoding, which can facilitate species‐level identification irrespective of developmental stage and the presence of flowers or fruits, may be a promising tool for monitoring and controlling trade involving threatened species. In this study, we test the potential value of barcoding on 41 Euphorbia species representative of the genus in Madagascar, using the two widely adopted core barcode markers (matK and rbcL), along with two additional DNA regions, nuclear internal transcribed spacer (ITS) and the chloroplastic intergenic spacer psbA‐trnH. For each marker and for selected marker combinations, inter‐ and intraspecific distance estimates and species discrimination rates are calculated. Results using just the ‘official’ barcoding markers yield overlapping inter‐ and intraspecific ranges and species discrimination rates below 60%. When ITS is used, whether alone or in combination with the core markers, species discrimination increases to nearly 100%, whereas the addition of psbA‐trnH produces less satisfactory results. This study, the first ever to test barcoding on the large, commercially important genus Euphorbia shows that this method could be developed into a powerful identification tool and thereby contribute to more effective application of CITES regulations.  相似文献   
924.
Spondyloarthritis (SpA) comprises a heterogeneous group of inflammatory diseases, with strong association to human leukocyte antigen (HLA)-B27. A triggering bacterial infection has been considered as the cause of SpA, and bacterial heat shock protein (HSP) seems to be a strong T cell antigen. Since bacterial and human HSP60, also named HSPD1, are highly homologous, cross-reactivity has been suggested in disease initiation. In this study, levels of antibodies against bacterial and human HSP60 were analysed in SpA patients and healthy controls, and the association between such antibodies and disease severity in relation to HLA-B27 was evaluated.Serum samples from 82 patients and 50 controls were analysed by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G1, IgG2, IgG3 and IgG4 antibodies against human HSP60 and HSP60 from Chlamydia trachomatis, Salmonella enteritidis and Campylobacter jejuni. Disease severity was assessed by the clinical scorings Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Metrology Index (BASMI).Levels of IgG1 and IgG3 antibodies against human HSP60, but not antibodies against bacterial HSP60, were elevated in the SpA group compared with the control group. Association between IgG3 antibodies against human HSP60 and BASMI was shown in HLA-B27+ patients. Only weak correlation between antibodies against bacterial and human HSP60 was seen, and there was no indication of cross-reaction.These results suggest that antibodies against human HSP60 is associated with SpA, however, the theory that antibodies against human HSP60 is a specific part of the aetiology, through cross-reaction to bacterial HSP60, cannot be supported by results from this study. We suggest that the association between elevated levels of antibodies against human HSP60 and disease may reflect a general activation of the immune system and an increased expression of human HSP60 in the synovium of patients with SpA.  相似文献   
925.

Background

DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species.

Methodology/Principal Findings

We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95–100% success), but less for species identification (71–88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84–90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA.

Conclusions/Significance

Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications.  相似文献   
926.

Purpose

Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for in vivo cancer experiments.

Experimental design

B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed.

Results

Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts.

Conclusion

We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma.  相似文献   
927.
Increasing pCO2 (partial pressure of CO2) in an “acidified” ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long‐term evolutionary shifts that could affect inter‐specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short‐term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2‐conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2‐conditioned clones differed from those in the original short‐term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long‐term phytoplankton community responses to changing pCO2.  相似文献   
928.
929.
The implementation of the Water Framework Directive has required intense research in applied aquatic ecology in Europe, and thus created challenges for data management in international research projects. In the project Waterbodies in Europe: Integrative Systems to assess Ecological status and Recovery (WISER), biological and environmental data from rivers, lakes, transitional and coastal waters in 26 European countries were collated. More than one million records of biological observations were stored in the project’s central database, representing phytoplankton, macrophytes, macroalgae, angiosperms, phytobenthos, invertebrates and fish. The central database includes new data from the WISER field campaign in lakes and transitional/coastal waters during 2009–2010 (more than 6,000 biological samples from 58 waterbodies in 14 countries). The purpose of this paper is to provide an overview of the data collated within WISER, in order to facilitate future re-use of these data by other scientists. More specifically, the objectives are to (1) describe the data management in WISER, (2) describe the structure and content of the WISER central database and (3) share experiences and give recommendations for data management in large ecological research projects.  相似文献   
930.
Identifying the three-dimensional molecular organization of subcellular organelles in intact cells has been challenging to date. Here we present an analysis approach for three-dimensional localization microscopy that can not only identify subcellular objects below the diffraction limit but also quantify their shape and volume. This approach is particularly useful to map the topography of the plasma membrane and measure protein distribution within an undulating membrane.Single molecule localization microscopy (SMLM) (1–3) is a superresolution fluorescence microscopy technique that produces coordinate data for single molecule localizations with a precision of tens of nanometers in live and fixed cells. These methods have mainly been performed with total internal reflectance fluorescence microscopy and therefore have generated two-dimensional molecular coordinates. Such two-dimensional data sets have revealed nanosized clusters of membrane proteins at the cell surface (4–7). This was achieved with analysis routines based on pair-correlation analysis (8), Ripley’s K function (9), and related techniques. While three-dimensional localization microscopy techniques such as biplane imaging (10), astigmatic spot analysis (11), and depth-encoding point-spread functions (12) have now been developed, quantitative analysis approaches of three-dimensional coordinate patterns have not.Here, we describe an approach based on Getis and Franklin''s local point pattern analysis to quantitatively analyze three-dimensional subcellular structures and map plasma membrane topography. The latter can also be used to account for topography-induced clustering of membrane proteins in an undulating membrane. To illustrate the approach, we generated three-dimensional SMLM data of the membrane dye DiI and the protein Linker for Activation of T cells (LAT) fused to the photoswitchable fluorescent protein mEos2 in T cells. It has been previously shown that LAT resides within the plasma membrane as well as membrane-proximal vesicles (5,13). The data were acquired using the biplane SMLM technique and highly inclined and laminated optical sheet illumination (14). Three-dimensional molecular coordinates were calculated by fitting a three-dimensional theoretical point-spread-function to the acquired data.As previously described for two-dimensional SMLM data analysis (5), Ripley’s K-function is calculated according to Eq. 1 where V is the analyzed volume, n is the total number of points, and r is the radius of a sphere (a circle for the two-dimensional case) centered on each point. The value K(r) is thus a measure of how many points are encircled within a sphere of radius r:K(r)=Vi=1nj=1n(δij/n2);δij=1ifd(pointi,pointj)<r,0else.(1)For completely spatially random (CSR) data, K(r) scales with the volume of the sphere. We therefore linearize the K-function such that it scales with radius (the L-function) using:L(r)=(3K(r)4π)1/3.(2)The value of L(r)−r is then zero for the CSR case. Values of L(r)−r above zero indicate clustering at the length scale, r.Next we used the related Getis and Franklin''s local point pattern analysis to generate a clustering value (L(r) at r = 50 nm; L(50)) for each point, j, based on the local three-dimensional molecular density. This was calculated using:Lj(50)=((3V4π)i=1n(δijn))1/3;δij=1ifd(pointi,pointj)<50,0else.(3)These values can then be interpolated such that every voxel in a volume is assigned a cluster value based on the number of encircled points, relative to the expected CSR case. This allows construction of isosurfaces where all points on the surface have an identical L(50) value. A high threshold imparts a strict criterion for cluster detection compared to a lower one, and this allows users to, for example, determine the efficiency of sequestration into clusters by quantifying the cluster number and size as a function of the threshold.To illustrate the identification of subcellular structures, Lat-mEos2 was imaged by three-dimensional SMLM in activated T cells at the immunological synapse (Fig. 1 A). Three-dimensional projections of isosurfaces (for L(50) = 200) clearly identified intracellular LAT vesicles at varying depths within the synapse (Fig. 1, B and C). Cluster statistics were extracted from this data set to quantify the distribution of clusters in the z direction as well as the volume and sphericity of the LAT objects themselves (Fig. 1, DF).Open in a separate windowFigure 1Identification of subcellular objects in three dimensions by isosurface rendering of molecular distribution. (A) Schematic of a T cell synapse formed against an activating coverslip where subsynaptic LAT vesicles (red dots) can be imaged with three-dimensional SMLM. (B and C) Isosurfaces, shown in x,z view (B) and as projection (C), identify T cell vesicles as LAT objects with L(50) > 200 (Eq. 3). (DF) Distribution of LAT objects in z direction (D), volume (E), and sphericity (F) of LAT objects in T cells.Membrane undulations can cause clustering artifacts when the distribution of membrane proteins is recorded as a two-dimensional projection (15) (Fig. 2 A), as is the case in two-dimensional SMLM under total internal reflectance fluorescence illumination. To illustrate a solution to this problem, we obtained three-dimensional SMLM data sets of the membrane dye DiI (16) in resting T cells adhered onto nonactivating coverslips. With appropriately short labeling times to prevent dye internalization, it can be assumed that all DiI molecules reside in the plasma membrane. In this case, as is the case for plasma membrane proteins, neither two-dimensional nor three-dimensional analysis is appropriate, as it is a priori known the points must be derived from a two-dimensional membrane folded in three-dimensional space. To correct for membrane undulations, the plasma membrane topography must first be mapped so that molecular coordinates of membrane molecules can be appropriately corrected in two-dimensional projections. The position of the plasma membrane in three dimensions, i.e., the membrane topography, was determined by averaging the z position of all DiI molecules within a 100-nm radius in x-y at each point. The averaged z-position of DiI molecules was then displayed as a map, which exhibits a smooth, undulating profile (Fig. 2 B). The selection of this radius determines the accuracy of the assigned z position but also causes smoothing of the membrane profile.Open in a separate windowFigure 2Mapping of membrane topography and correction of molecular distributions in undulating membranes. (A) Two-dimensional projections can cause cluster artifacts, for example in membrane ruffles. Molecules (red rectangles) in the upper image are equally spaced along the membrane but appear as clusters in two-dimensional projections in areas with high gradient. (B) Three-dimensional membrane topography of a 2 × 2 μm plasma membrane area of a resting T cell obtained from averaged z positions of DiI molecules. Note that membrane undulation is ∼100 nm. (C) Map of membrane gradient, corresponding to the topography map shown in panel B, with an area of high gradient highlighted (dashed red box). (D) Correction of the circle radii in the Getis and Franklin cluster map calculations to account for projection artifacts. (E and F) Cluster map of data shown in panel C before (E) and after (F) correction for membrane gradient. Boxes in panels C, E, and F highlight the regions with high membrane gradient.Next, the gradient at the position of each DiI molecule was determined and interpolated into a gradient map (Fig. 2 C). Here, blue represents horizontal, i.e., flat membrane areas, whereas red regions indicate areas of high gradient. The information from the gradient map was then used to ensure that the two-dimensional circles in the Getis and Franklin cluster map calculations each correspond to an identical area of membrane, hence accounting for two-dimensional projection artifacts. To do this, the size of the circle (r) used to calculate the L value for each molecule was modified using Eq. 4, where c is calculated for the surface, S, using Eq. 5:r(corr)=r(uncorr)(1+c2)1/4,(4)c=((Sx)2+(Sy)2)1/2.(5)This operation is shown schematically in Fig. 2. The comparison of Getis and Franklin cluster maps before (Fig. 2 E) and after (Fig. 2 F) correction for the gradient shows that cluster values for DiI molecules were substantially reduced by up to 5–10% at sites where the plasma membrane had a high gradient (area highlighted in red box), and where the two-dimensional projection of three-dimensional structures caused an overestimation of clustering.In conclusion, we demonstrated that three-dimensional superresolution localization microscopy data can be used to identify and quantify subcellular structures. The approach has the distinct advantage that subcellular structures are solely identified by the distribution of the fluorescent marker so that no a priori knowledge of the structure is necessary. How precisely the subcellular structures are identified only depends on how efficiently the fluorescent maker is recruited to the structure, and hence does not depend on the resolution limits of optical microscopy. We applied the methods to two very different structures in T cells: small intracellular vesicles and the undulating plasma membrane. Importantly, the topography of plasma membrane can also be used to correct clustering artifacts in two-dimensional projections, which may be useful for distribution analysis within membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号