首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   26篇
  2023年   1篇
  2022年   7篇
  2021年   14篇
  2020年   6篇
  2019年   9篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   26篇
  2014年   25篇
  2013年   23篇
  2012年   39篇
  2011年   26篇
  2010年   25篇
  2009年   23篇
  2008年   15篇
  2007年   23篇
  2006年   20篇
  2005年   18篇
  2004年   16篇
  2003年   10篇
  2002年   5篇
  1999年   1篇
  1998年   1篇
排序方式: 共有359条查询结果,搜索用时 31 毫秒
91.
Among the eukaryotic members of the Hsp70 family, mitochondrial Hsp70 shows the highest degree of sequence identity with bacterial DnaK. Although they share a functional mechanism and homologous co-chaperones, they are highly specific and cannot be exchanged between Escherichia coli and yeast mitochondria. To provide a structural basis for this finding, we characterized both proteins, as well as two DnaK/mtHsp70 chimeras constructed by domain swapping, using biochemical and biophysical methods. Here, we show that DnaK and mtHsp70 display different conformational and biochemical properties. Replacing different regions of the DnaK peptide-binding domain with those of mtHsp70 results in chimeric proteins that: (a) are not able to support growth of an E. coli DnaK deletion strain at stress temperatures (e.g. 42 degrees C); (b) show increased accessibility and decreased thermal stability of the peptide-binding pocket; and (c) have reduced activation by bacterial, but not mitochondrial co-chaperones, as compared with DnaK. Importantly, swapping the C-terminal alpha-helical subdomain promotes a conformational change in the chimeras to an mtHsp70-like conformation. Thus, interaction with bacterial co-chaperones correlates well with the conformation that natural and chimeric Hsp70s adopt in solution. Our results support the hypothesis that a specific protein structure might regulate the interaction of Hsp70s with particular components of the cellular machinery, such as Tim44, so that they perform specific functions.  相似文献   
92.
Galectin-1 (Gal-1), a beta galactoside-binding lectin, is involved in multiple biological functions, such as cell adhesion, apoptosis, and metastasis. On the basis of its ability to interact with extracellular matrix (ECM) glycoproteins, we investigated the Gal-1 effect on Leydig cells, which express and are influenced by ECM proteins. In this study, Gal-1 was identified in Leydig cell cultures by immunofluorescence. To gain insight into its biological role, Gal-1 was added to purified rat Leydig cells, under both basal and human chorionic gonadotrophin-stimulated conditions. Substantial morphological changes were observed, and cell viability showed an 80% decrease after 24 h culture. As a functional consequence of Gal-1 addition, testosterone production was reduced in a dose-dependent fashion, reaching a minimum of 26% after 24 h compared with basal values. cAMP showed a similar variation after 3 h. Assessment of DNA hypodiploidy and caspase activity determinations indicated that the reduction in viability and in steroidogenesis was caused by apoptosis induced by Gal-1. Besides, addition of Gal-1 caused Leydig cell detachment. Presence of laminin-1 or lactose prevented the effect of Gal-1, suggesting that the carbohydrate recognition domain is involved in inducing apoptosis. These findings demonstrate a novel mechanism, based on Gal-1 and laminin-1 interaction, which could help us better understand the molecular basis of Leydig cell function and survival control.  相似文献   
93.
94.
95.
96.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) and its interaction with the human chaperone cyclophilin A are both targets for highly potent and promising antiviral drugs that are in the late stages of clinical development. Despite its high interest in regards to the development of drugs to counteract the worldwide HCV burden, NS5A is still an enigmatic multifunctional protein poorly characterized at the molecular level. NS5A is required for HCV RNA replication and is involved in viral particle formation and regulation of host pathways. Thus far, no enzymatic activity or precise molecular function has been ascribed to NS5A that is composed of a highly structured domain 1 (D1), as well as two intrinsically disordered domains 2 (D2) and 3 (D3), representing half of the protein. Here, we identify a short structural motif in the disordered NS5A-D2 and report its NMR structure. We show that this structural motif, a minimal Pro314–Trp316 turn, is essential for HCV RNA replication, and its disruption alters the subcellular distribution of NS5A. We demonstrate that this Pro-Trp turn is required for proper interaction with the host cyclophilin A and influences its peptidyl-prolyl cis/trans isomerase activity on residue Pro314 of NS5A-D2. This work provides a molecular basis for further understanding of the function of the intrinsically disordered domain 2 of HCV NS5A protein. In addition, our work highlights how very small structural motifs present in intrinsically disordered proteins can exert a specific function.  相似文献   
97.
98.

Background

Guatemala is a multiethnic and multilingual country located in Central America. The main population groups separate ‘Ladinos’ (mixed Native American-African-Spanish), and Native indigenous people of Maya descent. Among the present-day Guatemalan Maya, there are more than 20 different ethnic groups separated by different languages and cultures. Genetic variation of these communities still remains largely unexplored. The principal aim of this study is to explore the genetic variability of the Maya and ‘Ladinos’ from Guatemala by means of uniparental and ancestry informative markers (AIMs).

Results

Analyses of uniparental genetic markers indicate that Maya have a dominant Native American ancestry (mitochondrial DNA [mtDNA]: 100%; Y-chromosome: 94%). ‘Ladino’, however, show a clear gender-bias as indicated by the large European ancestry observed in the Y-chromosome (75%) compared to the mtDNA (0%). Autosomal polymorphisms (AIMs) also mirror this marked gender-bias: (i) Native American ancestry: 92% for the Maya vs. 55% for the ‘Ladino’, and (ii) European ancestry: 8% for the Maya vs. 41% for the ‘Ladino’. In addition, the impact of the Trans-Atlantic slave trade on the present-day Guatemalan population is very low (and only occurs in the ‘Ladino’; mtDNA: 9%; AIMs: 4%), in part mirroring the fact that Guatemala has a predominant orientation to the Pacific Ocean instead of a Caribbean one. Sequencing of entire Guatemalan mitogenomes has led to improved Native American phylogeny via the addition of new haplogroups that are mainly observed in Mesoamerica and/or the North of South America.

Conclusions

The data reveal the existence of a fluid gene flow in the Mesoamerican area and a predominant unidirectional flow towards South America, most likely occurring during the Pre-Classic (1800 BC-200 AD) and the Classic (200–1000 AD) Eras of the Mesoamerican chronology, coinciding with development of the most distinctive and advanced Mesoamerican civilization, the Maya. Phylogenetic features of mtDNA data also suggest a demographic scenario that is compatible with moderate local endogamy and isolation in the Maya combined with episodes of gene exchange between ethnic groups, suggesting an ethno-genesis in the Guatemalan Maya that is recent and supported on a cultural rather than a biological basis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1339-1) contains supplementary material, which is available to authorized users.  相似文献   
99.
100.
Brassinosteroids (BRs) regulate various physiological processes, such as tolerance to stresses and root growth. Recently, a connection was reported between BRs and nitric oxide (NO) in plant responses to abiotic stress. Here we present evidence supporting NO functions in BR signaling during root growth process. Arabidopsis seedlings treated with BR 24-epibrassinolide (BL) show increased lateral roots (LR) density, inhibition of primary root (PR) elongation and NO accumulation. Similar effects were observed adding the NO donor GSNO to BR-receptor mutant bri1-1. Furthermore, BL-induced responses in the root were abolished by the specific NO scavenger c-PTIO. The activities of nitrate reductase (NR) and nitric oxide synthase (NOS)-like, two NO generating enzymes were involved in BR signaling. These results demonstrate that BR increases the NO concentration in root cells, which is required for BR-induced changes in root architecture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号