首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   15篇
  2021年   17篇
  2020年   4篇
  2019年   6篇
  2018年   8篇
  2017年   5篇
  2016年   7篇
  2015年   14篇
  2014年   11篇
  2013年   20篇
  2012年   14篇
  2011年   17篇
  2010年   17篇
  2009年   6篇
  2008年   14篇
  2007年   17篇
  2006年   11篇
  2005年   12篇
  2004年   9篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1968年   1篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1964年   1篇
  1962年   1篇
  1960年   1篇
  1954年   1篇
  1952年   1篇
排序方式: 共有322条查询结果,搜索用时 16 毫秒
211.
The title compounds were made by reacting bis(diphenylphosphino)methane (dppm) with reduced solutions of OsCl64? and Ru2OCl104?. The crystal and molecular structures of these compounds have been determined form three-dimensional X-ray study. The cis-isomers crystallize with one CHCl3 per molecule of the complex. All three compounds crystallize in the monoclinic space group P21/n with unit cell dimensions as follows: Cis-OsCl2(dppm)2·CHCl3: a = 13.415(4) Å, b = 22.859(4) Å, c = 16.693(3) Å, β = 105.77(3)°, V = 4926(3) Å3, Z = 4. cis-RuCl2(dppm)2·CHCl3: a = 13.442(3) Å, b = 22.833(7) Å, c = 16.750(4) Å, β = 105.53(2)°, V = 4953(3) Å3, Z = 4. trans-RuCl2(dppm)2: a = 11.368(7) Å, b = 10.656(6) Å, c = 18.832(12) Å; β = 103.90(6)°, V = 2213(7) Å3; Z = 2. The structures were refined to R = 0.044 (Rw = 0.055) for cis-OsCl2(dppm)2·CHCl3; R = 0.065 (Rw = 0.079) for cis-RuCl2(dppm)2·CHCl3 and R = 0.028 (Rw = 0.038) for trans-RuCl2(dppm)2. The complexes are six coordinate with stable four-membered chelate rings. The PMP angle in the chelate rings is ca. 71° in each case.  相似文献   
212.
Photoaffinity labeling methods have allowed a definition of the sites of interaction between Taxol and its cellular target, the microtubule, specifically beta-tubulin. Our previous studies have indicated that [(3)H]3'-(p-azidobenzamido)Taxol photolabels the N-terminal 31 amino acids of beta-tubulin (Rao, S., Krauss, N. E., Heerding, J. M., Swindell, C. S., Ringel, I., Orr, G. A., and Horwitz, S. B. (1994) J. Biol. Chem. 269, 3132-3134) and [(3)H]2-(m-azidobenzoyl)Taxol photolabels a peptide containing amino acid residues 217-233 of beta-tubulin (Rao, S., Orr, G. A., Chaudhary, A. G., Kingston, D. G. I., and Horwitz, S. B. (1995) J. Biol. Chem. 270, 20235-20238). The site of photoincorporation of a third photoaffinity analogue of Taxol, [(3)H]7-(benzoyldihydrocinnamoyl) Taxol, has been determined. This analogue stabilizes microtubules polymerized in the presence of GTP, but in contrast to Taxol, does not by itself enhance the polymerization of tubulin to its polymer form. CNBr digestion of [(3)H]7-(benzoyldihydrocinnamoyl)Taxol-labeled tubulin, with further arginine-specific cleavage by clostripain resulted in the isolation of a peptide containing amino acid residues 277-293. Amino acid sequence analysis indicated that the photoaffinity analogue cross-links to Arg(282) in beta-tubulin. Advances made by electron crystallography in understanding the structure of the tubulin dimer have allowed us to visualize the three sites of photoincorporation by molecular modeling. There is good agreement between the binding site of Taxol in beta-tubulin as determined by photoaffinity labeling and electron crystallography.  相似文献   
213.
While stressful life events are an important cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The molecular mechanisms underlying such resilience are poorly understood. Here, we demonstrate that an inbred population of mice subjected to social defeat can be separated into susceptible and unsusceptible subpopulations that differ along several behavioral and physiological domains. By a combination of molecular and electrophysiological techniques, we identify signature adaptations within the mesolimbic dopamine circuit that are uniquely associated with vulnerability or insusceptibility. We show that molecular recapitulations of three prototypical adaptations associated with the unsusceptible phenotype are each sufficient to promote resistant behavior. Our results validate a multidisciplinary approach to examine the neurobiological mechanisms of variations in stress resistance, and illustrate the importance of plasticity within the brain's reward circuits in actively maintaining an emotional homeostasis.  相似文献   
214.
Screening of a focused library of TGF beta kinase inhibitors in the cellular HCV replicon model with luciferase read out yielded a number of low micromolar HCV inhibitors. Medicinal chemistry driven optimization resulted in the discovery of 4-[2-(5-bromo-2-fluoro-phenyl)pteridin-4-ylamino]-N-[3-(2- oxopyrrolidin-1-yl)propyl]nicotinamide 36 with a replicon EC(50) of 64nM, associated with a selective kinase inhibitory profile for human JNK kinases 2 and 3 as well as VEGFR-1, 2, and 3 kinases. Moreover, 36 showed an advantageous PK profile in mice. Experiments performed using different replicon constructs suggest that this series of kinase inhibitors might mediate their effect through the HCV non-structural protein 5A (NS5A).  相似文献   
215.
PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ development (sporogony) in mosquitoes by supporting melanization and phagocytosis of ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome composition, including elimination of commensal acetic acid bacteria. The alterations in the microbiome caused increased mosquito mortality and unexpectedly, significantly reduced sporogony. The survival rate of Δaslrim1 mosquitoes and their ability to support PfSPZ development, were partially restored by antibiotic treatment of the mosquitoes, and fully restored to baseline when Δaslrim1 mosquitoes were produced aseptically. Deletion of LRIM1 also affected reproductive capacity: oviposition, fecundity and male fertility were significantly compromised. Attenuation in fecundity was not associated with the altered microbiome. This work demonstrates that LRIM1’s regulation of the microbiome has a major impact on vector competence and longevity of A. stephensi. Additionally, LRIM1 deletion identified an unexpected role for this gene in fecundity and reduction of sperm transfer by males.  相似文献   
216.
Neurotropic mouse hepatitis virus (MHV-A59/RSA59) infection in mice induces acute neuroinflammation due to direct neural cell dystrophy, which proceeds with demyelination with or without axonal loss, the pathological hallmarks of human neurological disease, Multiple sclerosis (MS). Recent studies in the RSA59-induced neuroinflammation model of MS showed a protective role of CNS-infiltrating CD4+ T cells compared to their pathogenic role in the autoimmune model. The current study further investigated the molecular nexus between CD4+ T cell-expressed CD40Ligand and microglia/macrophage-expressed CD40 using CD40L-/- mice. Results demonstrate CD40L expression in the CNS is modulated upon RSA59 infection. We show evidence that CD40L-/- mice are more susceptible to RSA59 induced disease due to reduced microglia/macrophage activation and significantly dampened effector CD4+ T recruitment to the CNS on day 10 p.i. Additionally, CD40L-/- mice exhibited severe demyelination mediated by phagocytic microglia/macrophages, axonal loss, and persistent poliomyelitis during chronic infection, indicating CD40-CD40L as host-protective against RSA59-induced demyelination. This suggests a novel target in designing prophylaxis for virus-induced demyelination and axonal degeneration, in contrast to immunosuppression which holds only for autoimmune mechanisms of inflammatory demyelination.  相似文献   
217.
218.
Ketamine is an NMDA receptor antagonist commonly used to maintain general anesthesia. At anesthetic doses, ketamine causes high power gamma (25-50 Hz) oscillations alternating with slow-delta (0.1-4 Hz) oscillations. These dynamics are readily observed in local field potentials (LFPs) of non-human primates (NHPs) and electroencephalogram (EEG) recordings from human subjects. However, a detailed statistical analysis of these dynamics has not been reported. We characterize ketamine’s neural dynamics using a hidden Markov model (HMM). The HMM observations are sequences of spectral power in seven canonical frequency bands between 0 to 50 Hz, where power is averaged within each band and scaled between 0 and 1. We model the observations as realizations of multivariate beta probability distributions that depend on a discrete-valued latent state process whose state transitions obey Markov dynamics. Using an expectation-maximization algorithm, we fit this beta-HMM to LFP recordings from 2 NHPs, and separately, to EEG recordings from 9 human subjects who received anesthetic doses of ketamine. Our beta-HMM framework provides a useful tool for experimental data analysis. Together, the estimated beta-HMM parameters and optimal state trajectory revealed an alternating pattern of states characterized primarily by gamma and slow-delta activities. The mean duration of the gamma activity was 2.2s([1.7,2.8]s) and 1.2s([0.9,1.5]s) for the two NHPs, and 2.5s([1.7,3.6]s) for the human subjects. The mean duration of the slow-delta activity was 1.6s([1.2,2.0]s) and 1.0s([0.8,1.2]s) for the two NHPs, and 1.8s([1.3,2.4]s) for the human subjects. Our characterizations of the alternating gamma slow-delta activities revealed five sub-states that show regular sequential transitions. These quantitative insights can inform the development of rhythm-generating neuronal circuit models that give mechanistic insights into this phenomenon and how ketamine produces altered states of arousal.  相似文献   
219.
Monocyte chemotactic protein-1 (MCP-1) binding to its receptor, CCR2B, plays an important role in a variety of diseases involving infection, inflammation, and/or injury. In our effort to understand the molecular basis of this interaction and its biological consequences, we recognized a conserved hexad of amino acids at the N-terminal extracellular domain of several chemokine receptors, including CCR2B. Human embryonic kidney 293 cells expressing Flag-tagged CCR2B containing site-directed mutations in this region, 21-26, including a consensus tyrosine sulfation site were used to determine MCP-1 binding and its biological consequences. The results showed that several of these amino acids are important for MCP-1 binding and consequent lamellipodium formation, chemotaxis, and signal transduction involving adenylate cyclase inhibition and Ca(2+) influx into cytoplasm. Mutations that prevented adenylate cyclase inhibition and Ca(2+) influx did not significantly inhibit lamellipodium formation and chemotaxis, suggesting that these signaling events are not involved in chemotaxis. CCR2B was found to be sulfated at Tyr(26); this sulfation was abolished by the substitution of Tyr with Ala and severely reduced by substitution of Asp(25), a part of the consensus sulfation site. The expressed CCR2B was found to be N:-glycosylated, as N:-glycosidase F treatment of the receptor or growth of the cells in tunicamycin reduced the receptor size to the same level, from 50 to 45 kDa. Thus, CCR2B is the first member of the CC chemokine receptor family shown to be a glycoprotein that is sulfated at the N-terminal Tyr. These post-translational modifications probably have significant biological functions.  相似文献   
220.
Chronic obstructive pulmonary disease (COPD) is a smoking-related disease that lacks effective therapies due partly to the poor understanding of disease pathogenesis. The aim of this study was to identify molecular pathways that could be responsible for the damaging consequences of smoking. To do this, we employed Gene Set Enrichment Analysis to analyze differences in global gene expression, which we then related to the pathological changes induced by cigarette smoke (CS). Sprague-Dawley rats were exposed to whole body CS for 1 day and for various periods up to 8 mo. Gene Set Enrichment Analysis of microarray data identified that metabolic processes were most significantly increased early in the response to CS. Gene sets involved in stress response and inflammation were also upregulated. CS exposure increased neutrophil chemokines, cytokines, and proteases (MMP-12) linked to the pathogenesis of COPD. After a transient acute response, the CS-exposed rats developed a distinct molecular signature after 2 wk, which was followed by the chronic phase of the response. During this phase, gene sets related to immunity and defense progressively increased and predominated at the later time points in smoke-exposed rats. Chronic CS inhalation recapitulated many of the phenotypic changes observed in COPD patients including oxidative damage to macrophages, a slowly resolving inflammation, epithelial damage, mucus hypersecretion, airway fibrosis, and emphysema. As such, it appears that metabolic pathways are central to dealing with the stress of CS exposure; however, over time, inflammation and stress response gene sets become the most significantly affected in the chronic response to CS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号