首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   19篇
  473篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   9篇
  2015年   19篇
  2014年   21篇
  2013年   33篇
  2012年   32篇
  2011年   28篇
  2010年   18篇
  2009年   23篇
  2008年   25篇
  2007年   22篇
  2006年   14篇
  2005年   16篇
  2004年   20篇
  2003年   10篇
  2002年   8篇
  2001年   16篇
  2000年   8篇
  1999年   11篇
  1997年   6篇
  1994年   2篇
  1993年   3篇
  1990年   4篇
  1989年   5篇
  1988年   10篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1962年   2篇
排序方式: 共有473条查询结果,搜索用时 0 毫秒
141.
142.
ABSTRACT

Enzymes are powerful tools that help sustain a clean environment in several ways. They are utilized for environmental purposes in a number of industries including agro-food, oil, animal feed, detergent, pulp and paper, textile, leather, petroleum, and specialty chemical and biochemical industry. Enzymes also help to maintain an unpolluted environment through their use in waste management. Recombinant DNA technology, protein engineering, and rational enzyme design are the emerging areas of research pertaining to environmental applications of enzymes. The future will also see the employment of various technologies including gene shuffling, high throughput screening, and nanotechnology. This article presents an overview of the enzymatic applications in pollution control and the promising research avenues in this area.  相似文献   
143.

Background

Head and neck Magnetic Resonance (MR) Images are vulnerable to the arterial blood in-flow effect. To compensate for this effect and enhance accuracy and reproducibility, dynamic tracer concentration in veins was proposed and investigated for quantitative dynamic contrast-enhanced (DCE) MRI analysis in head and neck.

Methodology

21 patients with head and neck tumors underwent DCE-MRI at 3T. An automated method was developed for blood vessel selection and separation. Dynamic concentration-time-curves (CTCs) in arteries and veins were used for the Tofts model parameter estimations. The estimation differences by using CTCs in arteries and veins were compared. Artery and vein voxels were accurately separated by the automated method. Remarkable inter-slice tracer concentration differences were found in arteries while the inter-slice concentration differences in veins were moderate. Tofts model fitting by using the CTCs in arteries and veins produced significantly different parameter estimations. The individual artery CTCs resulted in large (>50% generally) inter-slice parameter estimation variations. Better inter-slice consistency was achieved by using the vein CTCs.

Conclusions

The use of vein CTCs helps to compensate for arterial in-flow effect and reduce kinetic parameter estimation error and inconsistency for head and neck DCE-MRI.  相似文献   
144.
Amyotrophic lateral sclerosis (ALS) is a late onset and progressive motor neuron disease. Mutations in the gene coding for fused in sarcoma/translocated in liposarcoma (FUS) are responsible for some cases of both familial and sporadic forms of ALS. The mechanism through which mutations of FUS result in motor neuron degeneration and loss is not known. FUS belongs to the family of TET proteins, which are regulated at the post-translational level by arginine methylation. Here, we investigated the impact of arginine methylation in the pathogenesis of FUS-related ALS. We found that wild type FUS (FUS-WT) specifically interacts with protein arginine methyltransferases 1 and 8 (PRMT1 and PRMT8) and undergoes asymmetric dimethylation in cultured cells. ALS-causing FUS mutants retained the ability to interact with both PRMT1 and PRMT8 and undergo asymmetric dimethylation similar to FUS-WT. Importantly, PRMT1 and PRMT8 localized to mutant FUS-positive inclusion bodies. Pharmacologic inhibition of PRMT1 and PRMT8 activity reduced both the nuclear and cytoplasmic accumulation of FUS-WT and ALS-associated FUS mutants in motor neuron-derived cells and in cells obtained from an ALS patient carrying the R518G mutation. Genetic ablation of the fly homologue of human PRMT1 (DART1) exacerbated the neurodegeneration induced by overexpression of FUS-WT and R521H FUS mutant in a Drosophila model of FUS-related ALS. These results support a role for arginine methylation in the pathogenesis of FUS-related ALS.  相似文献   
145.
The identification of specific target proteins for any diseased condition involves extensive characterization of the potentially involved proteins. Members of a protein family demonstrating comparable features may show certain unusual features when implicated in a pathological condition. Advancements in the field of computational biology and the use of various bioinformatics tools for analysis can aid researchers to comprehend their system of work in primary stages of research. This initial screening can help to reduce time and cost of testing and experimentation in laboratory. Human matrix metalloproteinase (MMP) family of endopeptidases is one such family of 23 members responsible for the remodeling of extracellular matrix (ECM) by degradation of the ECM proteins. Though their role has been implicated in various pathological conditions such as arthritis, atherosclerosis, cancer, liver fibrosis, cardio-vascular and neurodegenerative disorders, little is known about the specific involvement of members of the large MMP family in diseases. A comparative in silico characterization of the MMP protein family has been carried out to analyze their physico-chemical, secondary structural and functional properties. Based on the observed patterns of occurrence of atypical features, we hypothesize that cysteine rich and highly thermostable MMPs might be key players in diseased conditions. Thus, a plausible grouping of disease responsive MMPs that might be considered as promising clinical targets may be done. This study can be used as a fundamental approach to characterize, analyze and screen large protein families for the identification of signature patterns.  相似文献   
146.
147.
As an adaptive mechanism, hypocotyl dormancy delays emergence of functional leaf until favorable season of growth in Podophyllum hexandrum, an endangered medicinal plant of the western Himalayas. However, upon exposure of the freshly germinated seedlings to favorable temperature (25°C), functional leaves emerged within 20 days. Therefore, we examined regulation mechanisms of growth and development of this alpine plant by temperature under laboratory conditions. The seedlings were exposed to (1) 25°C (temperature prevailing at the time of maximum vegetative growth), (2) 4°C (mean temperature at the onset of winter in its natural habitat), and (3) 10°C (an intermediate temperature). Slackened growth at 4°C was followed by senescence of aerial parts and quiescence of roots and predetermined leaf primordia. Rapid development of leaf primordia at 25°C was associated with increased starch hydrolysis. This was evident from higher α-amylase activity and reducing sugars. These parameters decreased on sudden exposure to 4°C. In contrast, the roots (perennating organs) showed a slight increase (1.36-fold) in α-amylase activity. Growth and development in seedlings growing at 10°C (temperature less adverse than 4°C) were comparatively faster. The content of reducing sugars and α-amylase activity were also higher in all the seedling parts at 10°C as compared to 4°C. This indicated larger requirements for sugar by the seedlings at 10°C. Irrespective of temperature, maximum changes in nitrate and nitrate reductase occurred during the initial 10 days, i.e., when the readily available form of sugars (reducing sugar) was highest. This indicated that a temperature-dependent availability of carbon, but not temperature itself, was an important regulator of uptake and reduction of nitrogen. IHBT Publication number 508a.  相似文献   
148.

Purpose

This study was aimed to determine whether pure molecular-based diffusion coefficient (D) and perfusion-related diffusion parameters (perfusion fraction f, perfusion-related diffusion coefficient D*) differ in healthy livers and fibrotic livers through intra-voxel incoherent motion (IVIM) MR imaging.

Material and Methods

17 healthy volunteers and 34 patients with histopathologically confirmed liver fibrosis patients (stage 1 = 14, stage 2 = 8, stage 3& 4 = 12, METAVIR grading) were included. Liver MR imaging was performed at 1.5-T. IVIM diffusion weighted imaging sequence was based on standard single-shot DW spin echo-planar imaging, with ten b values of 10, 20, 40, 60, 80, 100, 150, 200, 400, 800 sec/mm2 respectively. Pixel-wise realization and regions-of-interest based quantification of IVIM parameters were performed.

Results

D, f, and D* in healthy volunteer livers and patient livers were 1.096±0.155 vs 0.917±0.152 (10−3 mm2/s, p = 0.0015), 0.164±0.021 vs 0.123±0.029 (p<0.0001), and 13.085±2.943 vs 9.423±1.737 (10−3 mm2/s, p<0.0001) respectively, all significantly lower in fibrotic livers. As the fibrosis severity progressed, D, f, and D* values decreased, with a trend significant for f and D*.

Conclusion

Fibrotic liver is associated with lower pure molecular diffusion, lower perfusion volume fraction, and lower perfusion-related diffusion. The decrease of f and D* in the liver is significantly associated liver fibrosis severity.  相似文献   
149.
Utilization of enzymes for environmental applications   总被引:6,自引:0,他引:6  
Enzymes are powerful tools that help sustain a clean environment in several ways. They are utilized for environmental purposes in a number of industries including agro-food, oil, animal feed, detergent, pulp and paper, textile, leather, petroleum, and specialty chemical and biochemical industry. Enzymes also help to maintain an unpolluted environment through their use in waste management. Recombinant DNA technology, protein engineering, and rational enzyme design are the emerging areas of research pertaining to environmental applications of enzymes. The future will also see the employment of various technologies including gene shuffling, high throughput screening, and nanotechnology. This article presents an overview of the enzymatic applications in pollution control and the promising research avenues in this area.  相似文献   
150.
Patients with acute kidney injury (AKI) have increased serum proinflammatory cytokines and an increased occurrence of respiratory complications. The aim of the present study was to examine the effect of renal and extrarenal cytokine production on AKI-mediated lung injury in mice. C57Bl/6 mice underwent sham surgery, splenectomy, ischemic AKI, or ischemic AKI with splenectomy and kidney, spleen, and liver cytokine mRNA, serum cytokines, and lung injury were examined. The proinflammatory cytokines IL-6, CXCL1, IL-1β, and TNF-α were increased in the kidney, spleen, and liver within 6 h of ischemic AKI. Since splenic proinflammatory cytokines were increased, we hypothesized that splenectomy would protect against AKI-mediated lung injury. On the contrary, splenectomy with AKI resulted in increased serum IL-6 and worse lung injury as judged by increased lung capillary leak, higher lung myeloperoxidase activity, and higher lung CXCL1 vs. AKI alone. Splenectomy itself was not associated with increased serum IL-6 or lung injury vs. sham. To investigate the mechanism of the increased proinflammatory response, splenic production of the anti-inflammatory cytokine IL-10 was determined and was markedly upregulated. To confirm that splenic IL-10 downregulates the proinflammatory response of AKI, IL-10 was administered to splenectomized mice with AKI, which reduced serum IL-6 and improved lung injury. Our data demonstrate that AKI in the absence of a counter anti-inflammatory response by splenic IL-10 production results in an exuberant proinflammatory response and lung injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号