首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   21篇
  2023年   2篇
  2021年   6篇
  2020年   2篇
  2019年   8篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   11篇
  2014年   12篇
  2013年   16篇
  2012年   26篇
  2011年   22篇
  2010年   14篇
  2009年   10篇
  2008年   17篇
  2007年   16篇
  2006年   13篇
  2005年   21篇
  2004年   7篇
  2003年   10篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1995年   2篇
  1994年   2篇
  1991年   2篇
  1989年   6篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1956年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有302条查询结果,搜索用时 26 毫秒
51.
Phosphorylation of the RAF-1 protooncogene product and activation of its associated serine/threonine kinase are common features of the response of cells to peptide growth factors. We have used wild-type and mutant epidermal growth factor (EGF) receptors to investigate mechanisms of RAF-1 phosphorylation. In vivo EGF treatment rapidly stimulated phosphorylation of RAF-1 exclusively on serine residues. Stimulation of RAF-1 phosphorylation occurred at 37 degrees C but not at 4 degrees C and persisted after dissociation of EGF from its receptor. EGF-induced RAF-1 serine phosphorylation required the intrinsic tyrosine kinase activity of the EGF receptor but was independent of EGF receptor self-phosphorylation and of ligand-induced receptor internalization. Down-regulation of protein kinase C did not affect the EGF-induced increase in RAF-1 phosphorylation. These data suggest that the activated tyrosine kinase activity of the EGF receptor enhances serine phosphorylation of RAF-1 via an intermediary molecule(s).  相似文献   
52.
By controlling the subcellular localization of growth factor receptors, cells can modulate the activity of intracellular signal transduction pathways. During Caenorhabditis elegans vulval development, a ternary complex consisting of the LIN-7, LIN-2 and LIN-10 PDZ domain proteins localizes the epidermal growth factor receptor (EGFR) to the basolateral compartment of the vulval precursor cells (VPCs) to allow efficient receptor activation by the inductive EGF signal from the anchor cell. We have identified EGFR substrate protein-8 (EPS-8) as a novel component of the EGFR localization complex that links receptor trafficking to cell fate specification. EPS-8 expression is upregulated in the primary VPCs, where it creates a positive feedback loop in the EGFR/RAS/MAPK pathway. The membrane-associated guanylate kinase LIN-2 recruits EPS-8 into the receptor localization complex to retain the EGFR on the basolateral plasma membrane, and thus allow maximal receptor activation in the primary cell lineage. Low levels of EPS-8 in the neighboring secondary VPCs result in the rapid degradation of the EGFR, allowing these cells to adopt the secondary cell fate. Extracellular signals thus regulate EGFR trafficking in a cell type-specific manner to control pattern formation during organogenesis.  相似文献   
53.
Fibrates (anti-hyperlipidemic agents) enhance the mRNA expression of uncoupling protein 2 (UCP2) in the liver and that of uncoupling protein 3 (UCP3) in skeletal muscle in standard-diet-fed rats and induce a de novo expression of UCP3 (mRNA and protein) in the liver of high-fat-fed rats. Here, we report that in the liver of normal rats, fenofibrate induces a de novo expression of UCP3 and a 6-fold increase in UCP2 mRNA, whereas UCP2 protein was not detectable. Indeed, we evidenced an ORF in UCP2 exon 2 potentially able to inhibit the expression of the protein. Fenofibrate increases the expression and activity of hepatic enzymes and cofactors involved in lipid handling and UCP3 activity and, as is the case for UCP3, induces other muscle-specific genes (e.g., Carnitine palmitoyl transferase 1b and Ubiquinone biosynthesis protein COQ7 homolog). In addition, we demonstrated that in mitochondria from fenofibrate-treated rats a palmitoyl-carnitine-induced GDP-sensitive uncoupling takes place, involving UCP3 rather than other uncouplers (i.e., UCP2 and Adenine Nucleotide Translocase). Thus, the liver of fenofibrate-treated standard-diet- fed rat is a useful model for investigations of the biochemical functions of UCP3 and allowed us to demonstrate that fenofibrate programs a gene-expression pattern able to modulate lipid handling and UCP3 activation.  相似文献   
54.
55.
Permanent xylem blockage is a common result of attacks by herbivores and fungi. The mitosporic fungus Phoma tracheiphila (Petri) Kantschaveli et Gikachvili, is the agent of a Citrus tracheomycosis (“malsecco disease”) causing xylem impairment and leading to leaf shedding and plant dieback. In the present study, this pathogen was used for monitoring the effects of increasing levels of stem hydraulic resistance (R stem) on leaf water status and gas exchange. In this view, measurements are reported of changes in the hydraulic resistance of infected stems (R stem) of C. aurantium (sour orange) during progressive and irreversible xylem blockage with parallel measurements of leaf water potential and conductance to water vapour. Leaves were highly responsive to increasing R stem as due to fungal infection, with substantial stomatal closure and drop in water potential.  相似文献   
56.

Background and Aims

The hydraulic architecture and water relations of fruits and leaves of Capsicum frutescens were measured before and during the fruiting phase in order to estimate the eventual impact of xylem cavitation and embolism on the hydraulic isolation of fruits and leaves before maturation/abscission.

Methods

Measurements were performed at three different growth stages: (1) actively growing plants with some flowers before anthesis (GS1), (2) plants with about 50 % fully expanded leaves and immature fruits (GS2) and (3) plants with mature fruits and senescing basal leaves (GS3). Leaf conductance to water vapour as well as leaf and fruit water potential were measured. Hydraulic measurements were made using both the high-pressure flow meter (HPFM) and the vacuum chamber (VC) technique.

Key Results

The hydraulic architecture of hot pepper plants during the fruiting phase was clearly addressed to favour water supply to growing fruits. Hydraulic measurements revealed that leaves of GS1 plants as well as leaves and fruit peduncles of GS2 plants were free from significant xylem embolism. Substantial increases in leaf petiole and fruit peduncle resistivity were recorded in GS3 plants irrespective of the hydraulic technique used. The higher fraction of resistivity measured using the VC technique compared with the HPFM technique was apparently due to conduit embolism.

Conclusions

The present study is the first to look at the hydraulics of leaves and fruits during growth and maturation through direct, simultaneous measurements of water status and xylem efficiency of both plant regions at different hours of the day.  相似文献   
57.
58.
CotE is a morphogenic protein that controls the assembly of the coat, the proteinaceous structure that surrounds and protects the spore of Bacillus subtilis. CotE has long been thought to interact with several outer coat components, but such interactions were hypothesized from genetic experiment results and have never been directly demonstrated. To study the interaction of CotE with other coat components, we focused our attention on CotC and CotU, two outer coat proteins known to be under CotE control and to form a heterodimer. We report here the results of pull-down experiments that provide the first direct evidence that CotE contacts other coat components. In addition, coexpression experiments demonstrate that CotE is needed and sufficient to allow formation of the CotC-CotU heterodimer in a heterologous host.The spore of Bacillus subtilis is a dormant cell, resistant to harsh conditions and able to survive extreme environmental conditions (25). Spores are produced in a sporangium that consists of an inner cell, the forespore, that will become the mature spore and an outer cell, the mother cell, that will lyse, liberating the mature spore (18, 26). Resistance of the spore to noxious chemicals, lytic enzymes, and predation by soil protozoans is in part due to the coat, a complex, multilayered structure of more than 50 proteins that encases the spore (5, 8, 13). Proteins that constitute the coat are produced in the mother cell and deposited around the outer membrane surface of the forespore in an ordered manner (8).A small subset of coat proteins have a regulatory role on the formation of the coat. Those proteins, referred to as morphogenic factors, do not affect the synthesis of the coat components but drive their correct assembly outside of the outer forespore membrane (8). Within this subset of regulatory coat proteins, SpoIVA and CotE play a crucial role. SpoIVA (6, 20, 23) is assembled into the basement layer of the coat and is anchored to the outer membrane of the forespore through its C terminus that contacts SpoVM, a small, amphipathic peptide embedded in the forespore membrane (16, 21, 22). A spoIVA-null mutation impairs the assembly of the coat around the forming spore, and as a consequence, coat material accumulates in the mother cell cytoplasm (23).CotE (28) assembles into a ring and surrounds the SpoIVA basement structure. The inner layer of the coat is then formed between the SpoIVA basement layer and the CotE ring by coat components produced in the mother cell that infiltrate through the CotE ring, while the outer layer of the coat is formed outside of CotE (6). However, not all CotE molecules are assembled into the ring-like structure, and CotE molecules are also found in the mother cell cytoplasm, at least up to 8 h after the start of sporulation (3). CotE was first identified as a morphogenic factor in a seminal study in which an ultrastructural analysis indicated that a cotE-null mutation prevented formation of the electron-dense outer layer of the coat while it did not affect inner coat formation (28). A subsequent mutagenesis study has revealed that CotE has a modular structure with a C-terminal domain involved in directing the assembly of various coat proteins, an internal domain involved in the targeting of CotE to the forespore, and a N-terminal domain that, together with the internal domain, directs the formation of CotE multimers (17). More recently, formation of CotE multimers has been also confirmed by a yeast two-hybrid approach (14). In a global study of protein interactions in the B. subtilis coat, performed by a fluorescence microscopy analysis of a collection of strains carrying cot-gfp fusions, CotE has been proposed to interact with most outer coat components (12).From those and other studies, the interactions of CotE with coat structural components have been exclusively inferred on the basis of genetic experiment results, i.e., cotE mutants that failed to assemble one or more coat components. Evidence of a direct interaction between CotE and another coat component has never been provided. We addressed this issue by using as a model two coat components, CotC and CotU, known to be controlled by CotE and to form a heterodimer (10, 28).CotC is an abundant, 66-amino-acid protein known to assemble in the outer coat in various forms: a monomer of 12 kDa, a homodimer of 21 kDa, and two less abundant forms of 12.5 and 30 kDa, probably due to posttranslational modifications of CotC (9). CotU is a structural homolog of CotC of 86 amino acids. The two proteins, which share an almost identical N terminus and a less conserved C terminus, interact, originating the formation of a heterodimer of 23 kDa (10). Heterodimer formation most likely requires a B. subtilis-specific factor since it does not occur in Escherichia coli or Saccharomyces cerevisiae (10). CotC and CotU are synthesized in the mother cell compartment of the sporulating cell but do not accumulate there since they are immediately assembled around the forming spore (10). In a strain carrying a cotE-null mutation, CotC and CotU, together with all other outer coat components, do not assemble around the forming spore (10). CotC and CotU are also dependent on CotH, an additional morphogenic factor involved in coat formation (9). A cotH-null mutation prevents CotC and CotU assembly in the coat as well as their accumulation in the mother cell cytoplasm (10). Since a mutation causing cotH overexpression allows CotC and CotU accumulation in the mother cell cytoplasm (1), it has been proposed that CotH acts by stabilizing CotC and CotU in the mother cell cytoplasm (1, 10).Here we provide the first direct evidence that CotE interacts with two other coat components, CotC and CotU, and show that CotE is essential and sufficient to mediate CotC-CotU interaction to form a heterodimer.  相似文献   
59.
The marine ecosystem can be considered a rather unexplored source of biological material (e.g. natural substances with therapeutic activity) and can also be a surprising source of enzymes carrying new and interesting catalytic activities to be applied in biocatalysis. The use of glycosyl hydrolases from marine environments dates back to the end of the 1960s and was mainly focused on the development of sensitive and reliable hydrolytic methods for the analysis of sugar chains. As a result not all the benefits of a particular enzymatic activity have been investigated, especially regarding the transglycosylation potential of these enzymes for the synthesis of glycosidic bonds. In this review, the potential of marine sources will be demonstrated reporting on the few examples found in literature for the synthesis and hydrolysis of biologically relevant oligosaccharides catalyzed by glycosyl hydrolases of marine origin. Particular emphasis is given to the synthesis of glycosidic bonds, which is easy by the use of glycosyl hydrolases. Further aspects considered in this review are applications of these biocatalysts for vegetal waste treatment in recovering useful materials, for structural identification and for preparation of target materials from new purified polysaccharides, for the synthesis or modification of food-related compounds and for glycobiology related studies.  相似文献   
60.
We investigated the association of the -11,391G>A, -11,377G>C, +45T>G, and +276G>T adiponectin single-nucleotide polymorphisms (SNPs) and expected haplotypes with the insulin resistance (IR) state in overweight/obese children; by using the haplotype background analysis, we also assessed the effect of each SNP independently. GG genotype at the -11,391 locus was associated with higher fasting insulin levels and homeostasis model assessment-IR index and lower adiponectin levels compared with GA + AA genotypes (p = 0.01, 0.002, and 0.03, respectively). Those heterozygous and homozygous for G allele at the -11,377 locus showed higher fasting glucose (p = 0.001 for both), fasting insulin (p = 0.001 for both), homeostasis model assessment-IR index (p < 0.001 for both), and triglyceride levels (p = 0.02 and 0.03, respectively) and lower adiponectin levels (p = 0.002 and 0.02, respectively) compared with C homozygotes. The +45G carriers showed higher fasting and 2-hour glucose levels (p = 0.01 for both) and lower adiponectin levels (p = 0.02) compared with non-carriers. Haplotype analysis suggested that, considering the same haplotypic background, each of the three polymorphisms exerted an independent effect on investigated parameters. The -11,391G>A, -11,377C>G, and +45T>G SNPs are associated with IR syndrome in overweight/obese children; they independently influence the investigated variables. The effect of +45T>G SNP seems to be marginal compared with the promoter SNPs. The GGT haplotype is associated with the highest degree of IR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号