首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   899篇
  免费   73篇
  972篇
  2023年   5篇
  2022年   8篇
  2021年   17篇
  2020年   7篇
  2019年   20篇
  2018年   10篇
  2017年   20篇
  2016年   24篇
  2015年   44篇
  2014年   45篇
  2013年   47篇
  2012年   78篇
  2011年   74篇
  2010年   60篇
  2009年   57篇
  2008年   63篇
  2007年   48篇
  2006年   53篇
  2005年   50篇
  2004年   43篇
  2003年   48篇
  2002年   39篇
  2001年   12篇
  2000年   8篇
  1999年   4篇
  1998年   8篇
  1997年   11篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有972条查询结果,搜索用时 8 毫秒
141.
ProBMP4 is initially cleaved at a site adjacent to the mature ligand (the S1 site) allowing for subsequent cleavage at an upstream (S2) site. Mature BMP4 synthesized from a precursor in which the S2 site cannot be cleaved remains in a complex with the prodomain that is targeted for lysosomal degradation, and is thus less active when overexpressed in Xenopus. Here we report that mice carrying a point mutation that prevents S2 processing show severe loss of BMP4 activity in some tissues, such as testes and germ cells, whereas other tissues that are sensitive to Bmp4 dosage, such as the limb, dorsal vertebrae and kidney, develop normally. In a haploinsufficient background, inability to cleave the S2 site leads to embryonic and postnatal lethality due to defects in multiple organ systems including the allantois, placental vasculature, ventral body wall, eye and heart. These data demonstrate that cleavage of the S2 site is essential for normal development and, more importantly, suggest that this site might be selectively cleaved in a tissue-specific fashion. In addition, these studies provide the first genetic evidence that BMP4 is required for dorsal vertebral fusion and closure of the ventral body wall.  相似文献   
142.
Potato can be severely affected by various pathogens, including Pectobacterium atrosepticum, the cause of bacterial soft rot on tubers and of blackleg on stems. To date, no complete resistance to P. atrosepticum is available, so that only cultivars exhibiting partial resistance can be found. The mechanistic basis of this type of resistance is still poorly understood. A proteomic approach was thus developed to identify pathways specifically activated during the interaction between potato tubers and P. atrosepticum. Protein profiles on silver‐stained gels in the 5–8 pH range were obtained from healthy and infected tubers from two cultivars differing for resistance level and analyzed by 2‐DE and nano‐LC‐MS/MS. Thirteen proteins were differentially up‐regulated in the partially resistant cv. Kerpondy; by contrast, no significant differences in protein profiles of inoculated and control tubers were observed in the susceptible cv. Bintje. Mass spectrometry and database searching showed that these proteins are involved in energetic metabolism (glyceraldehyde‐3‐phosphate dehydrogenase, 2‐phosphoglycerate dehydratase or enolase, fructose biphosphate aldolase and ATPase α subunit), cytoskeleton structure (actin), protein catabolism (cysteine protease inhibitor) and patatins or patatin precursors. Their involvement in defence responses of cv. Kerpondy to P. atrosepticum is discussed. Proteomic appears as an efficient approach to have insight into the mechanisms and pathways leading to potato resistance against Patrosepticum.  相似文献   
143.
Understanding human pre-implantation development has important implications for assisted reproductive technology (ART) and for human embryonic stem cell (hESC)-based therapies. Owing to limited resources, the cellular and molecular mechanisms governing this early stage of human development are poorly understood. Nonetheless, recent advances in non-invasive imaging techniques and molecular and genomic technologies have helped to increase our understanding of this fascinating stage of human development. Here, we summarize what is currently known about human pre-implantation embryo development and highlight how further studies of human pre-implantation embryos can be used to improve ART and to fully harness the potential of hESCs for therapeutic goals.  相似文献   
144.
145.
The discovery and SAR of a series of potent renin inhibitors possessing a novel 3,4-diarylpiperidine scaffold are described herein. The resulting compound 38 exhibit low nanomolar plasma renin IC(50), had a clean CYP 3A4 profile and displayed micromolar affinity for the hERG channel. Furthermore, it was found to be efficacious in the double transgenic rat hypertension model and show good to moderate oral bioavailability in two animal species.  相似文献   
146.
Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6–8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner’s criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility treatment and future derivation of patient-specific embryonic stem cells.  相似文献   
147.
148.
149.
ACTH-induced-hypertension is commonly employed as a model of stress-related hypertension, and despite extensive investigation, the mechanisms underlying elevated blood pressure (BP) are not well understood. We have reported that ACTH treatment increases tail-cuff systolic pressure in wild-type mice but not in mutant mice expressing ouabain-resistant alpha(2)-Na(+)-K(+)-ATPase subunits (alpha2(R/R) mice). Since tail-cuff measurements involve restraint stress, the present study used telemetry to distinguish between an effect of ACTH on resting BP vs. an ACTH-enhanced stress response. We also sought to explore the mechanisms underlying ACTH-induced BP changes in mutant alpha2(R/R) mice vs. wild-type mice (ouabain-sensitive alpha(2)-Na(+)-K(+)-ATPase, alpha2(S/S) mice). Baseline BP was not different between the two genotypes, but after 5 days of ACTH treatment, BP increased in alpha2(S/S) (104.0 +/- 2.6 to 117.7 +/- 3.0 mmHg) but not in alpha2(R/R) mice (108.2 +/- 3.2 to 111.5 +/- 4.0 mmHg). To test the hypothesis that ACTH hypertension is related to inhibition of alpha(2)-Na(+)-K(+)-ATPase on vascular smooth muscle by endogenous cardiotonic steroids, we measured BP and regional blood flow. Results suggest a differential sensitivity of renal, mesenteric, and cerebral circulations to ACTH and that the response depends on the ouabain sensitivity of the alpha(2)-Na(+)-K(+)-ATPase. Baseline cardiac performance was elevated in alpha2(S/S) but not alpha2(R/R) mice. Overall, the data establish that the alpha(2)-Na(+)-K(+)-ATPase ouabain-binding site is of central importance in the development of ACTH-induced hypertension. The mechanism appears to be related to alterations in cardiac performance, and perhaps vascular tone in specific circulations, presumably caused by elevated levels of circulating cardiotonic steroids.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号