The present study was focused on synthesis and characterization of copper nanoparticles to evaluate their efficacy against fruit rot pathogen of chilli crop. The green synthesis of nanoparticles was carried out by using extracts of Eucalyptus and Mint leaves. The synthesis of copper nanoparticles was confirmed by XRD, PSA, SEM and TEM. The average size of these particles synthesized by Eucalyptus leaf extract (CuNP-E) ranged from 10 to 130 nm, while as size of Mint leaf extract synthesized particles (CuNP-M) ranged from 23 to 39 nm, thus confirming their nano size. These green synthesized copper nanoparticles were evaluated against Colletotrichum capsici where Carbendazim 50 WP @ 500 ppm and copper oxychloride 50 WP @ 2500 ppm served as standard checks. The mycelia inhibition of Colletotrichum capsici caused by copper nanoparticles was studied on PDA medium. CuNP-M @ 1000 ppm showed highest mycelial inhibition of 99.78% followed by 93.75% at 500 ppm and CuNP-E @ 1000 ppm compared to standard fungicides, carbendazim 50 WP @ 500 ppm (72.82%), and copper oxychloride 50 WP @ 2500 ppm (85.85%). The CuNP-M @ 500 ppm were significantly superior to carbendazim 50 WP @ 500 ppm and copper oxychloride 50 WP @ 2500 ppm, but was statistically at par with CuNP-E @ 1000 ppm. This shows effectiveness of much lower concentration of copper nanoparticles compared to conventional fungicides. In detached fruit method, nanoparticles applied before inoculation of pathogen showed better results with regard to incubation period, lesion number and lesion size than after inoculation of pathogen. The present study reveals a simple, convenient, non-toxic and cost-efficient technique for the synthesis of nanoparticles and their effectiveness against Colletotrichum capsici. CuNP-M first time synthesized and evaluated against Colletotrichum capsici performed better than CuNP-E. 相似文献
Herein, we presented the synthesis and application of sodium dodecylbenzenesulfonate–based silver nanoparticles (termed as SDBS-AgNPs). The SDBS reverse micelles (RMs) in ethanol was used as nanoreactor for green AgNPs synthesis. The size, structure, and shape of SDBS-AgNPs were well distinct by UV/visible (UV/Vis), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) techniques. The SDBS-AgNPs were quite stable even at high temperature (80 °C), salt concentration (up to 300 μM), and wide pH range (2 to 12). Moreover, SDBS-AgNPs were found to be highly sensitive and selective colorimetric sensor for antihypertensive drug amlodipine (AML). The interaction of AML with SDBS-AgNPs resulted as a substantial increase in the absorbance and a prominent blue shift in wavelength from 426 to 400 nm. DLS results were further confirmed that the SDBS-AgNPs break into smaller sized particles. Similarly, FTIR results also verified the SDBS-AgNPs etching–based sensing of AML molecules due to the strong attraction by amine and carbonyl functional groups on the target drug. The proposed sensor exhibited linear response in the range of 0.001–200 μM (R2 = 0.9917) with limit of detection (LOD) and quantification (LOQ) of 0.161 and 0.49 μM, respectively. The probe remained selective against AML, even in the presence of equimolar interfering species (including other drugs and metal ions). Furthermore, findings proposed that the SDBS-AgNPs might be used as effective substitute to minimize infection severity by obstructing the biofilm formation against nosocomial and urinary tract infection (UTI) causing pathogens.
Primary cilium-dependent macroautophagy/autophagy is induced by the urinary flow in epithelial cells of the kidney proximal tubule. A major physiological outcome of this cascade is the control of cell size. Some components of the ATG machinery are recruited at the primary cilium to generate autophagic structures. Shear stress induced by the liquid flow promotes PtdIns3P synthesis at the primary cilium, and this lipid is required both for ciliogenesis and initiation of autophagy. We showed that PtdIns3P is generated by PIK3C2A, but not by PIK3C3/VPS34, during flow-associated primary cilium-dependent autophagy, in a ULK1-independent manner. Along the same line BECN1 (beclin 1), a partner of PIK3C3 in starvation-induced autophagy, is not recruited at the primary cilium under shear stress. Thus, kidney epithelial cells mobilize different PtdIns 3-kinases, i.e., PIK3C2A or PIK3C3, to produce PtdIns3P in order to initiate autophagy depending on the stimuli (shear stress or starvation). 相似文献
ABSTRACT This study presents a bibliometric analysis of the publications on melatonin research from the Scopus database during the period 2015–2019. Based on the keywords used, which are related to melatonin in the article title, the study retrieved 4411 documents for further analysis using various tools. We used Microsoft Excel to conduct the frequency analysis, VOSviewer for data visualization, and Harzing’s Publish or Perish for citation metrics and analysis. This study reports the results using standard bibliometric indicators such as the growth of publications, authorship patterns, collaboration, and prolific authors, country contribution, most active institutions, preferred journals, and top-cited articles. Based on our findings, there is a continuous growth of publications on melatonin research for 5 years since 2015. China was the largest contributor to melatonin research, followed by the United States. The Journal of Pineal Research published the most number of publications related to melatonin research. Our findings suggest that the role of melatonin in plant and food sciences, as well as in cancer, may in later years take over the clusters that earlier dominated melatonin research. 相似文献
BackgroundPancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with around 9% of patients surviving >5 years. Asymptomatic in its initial stages, PDAC is mostly diagnosed late, when already a locally advanced or metastatic disease, as there are no useful biomarkers for detection in its early stages, when surgery can be curative. We have previously described a promising biomarker panel (LYVE1, REG1A, and TFF1) for earlier detection of PDAC in urine. Here, we aimed to establish the accuracy of an improved panel, including REG1B instead of REG1A, and an algorithm for data interpretation, the PancRISK score, in additional retrospectively collected urine specimens. We also assessed the complementarity of this panel with CA19-9 and explored the daily variation and stability of the biomarkers and their performance in common urinary tract cancers.Methods and findingsClinical specimens were obtained from multiple centres: Barts Pancreas Tissue Bank, University College London, University of Liverpool, Spanish National Cancer Research Center, Cambridge University Hospital, and University of Belgrade. The biomarker panel was assayed on 590 urine specimens: 183 control samples, 208 benign hepatobiliary disease samples (of which 119 were chronic pancreatitis), and 199 PDAC samples (102 stage I–II and 97 stage III–IV); 50.7% were from female individuals. PDAC samples were collected from patients before treatment. The samples were assayed using commercially available ELISAs. Statistical analyses were performed using non-parametric Kruskal–Wallis tests adjusted for multiple comparisons, and multiple logistic regression. Training and validation datasets for controls and PDAC samples were obtained after random division of the whole available dataset in a 1:1 ratio. The substitution of REG1A with REG1B enhanced the performance of the panel to detect resectable PDAC. In a comparison of controls and PDAC stage I–II samples, the areas under the receiver operating characteristic curve (AUCs) increased from 0.900 (95% CI 0.843–0.957) and 0.926 (95% CI 0.843–1.000) in the training (50% of the dataset) and validation sets, respectively, to 0.936 in both the training (95% CI 0.903–0.969) and the validation (95% CI 0.888–0.984) datasets for the new panel including REG1B. This improved panel showed both sensitivity (SN) and specificity (SP) to be >85%. Plasma CA19-9 enhanced the performance of this panel in discriminating PDAC I–II patients from controls, with AUC = 0.992 (95% CI 0.983–1.000), SN = 0.963 (95% CI 0.913–1.000), and SP = 0.967 (95% CI 0.924–1.000). We demonstrate that the biomarkers do not show significant daily variation, and that they are stable for up to 5 days at room temperature. The main limitation of our study is the low number of stage I–IIA PDAC samples (n = 27) and lack of samples from individuals with hereditary predisposition to PDAC, for which specimens collected from control individuals were used as a proxy.ConclusionsWe have successfully validated our urinary biomarker panel, which was improved by substituting REG1A with REG1B. At a pre-selected cutoff of >80% SN and SP for the affiliated PancRISK score, we demonstrate a clinically applicable risk stratification tool with a binary output for risk of developing PDAC (‘elevated’ or ‘normal’). PancRISK provides a step towards precision surveillance for PDAC patients, which we will test in a prospective clinical study, UroPanc.Silvana Debernardi and colleagues establish a clinical risk score and a biomarker panel for early detection of pancreatic cancer. 相似文献