首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   64篇
  国内免费   5篇
  2023年   14篇
  2022年   48篇
  2021年   75篇
  2020年   31篇
  2019年   40篇
  2018年   51篇
  2017年   54篇
  2016年   50篇
  2015年   68篇
  2014年   88篇
  2013年   101篇
  2012年   99篇
  2011年   86篇
  2010年   46篇
  2009年   49篇
  2008年   55篇
  2007年   46篇
  2006年   56篇
  2005年   36篇
  2004年   41篇
  2003年   35篇
  2002年   25篇
  2001年   18篇
  2000年   19篇
  1999年   10篇
  1998年   7篇
  1997年   10篇
  1996年   8篇
  1995年   3篇
  1994年   9篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1987年   5篇
  1986年   6篇
  1985年   4篇
  1984年   6篇
  1983年   9篇
  1982年   9篇
  1981年   15篇
  1980年   8篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1973年   5篇
  1967年   3篇
排序方式: 共有1406条查询结果,搜索用时 31 毫秒
51.
ObjectivePhosphorous is an essential micronutrient of plants and involved in critical biological functions. In nature, phosphorous is mostly present in immobilized inorganic mineral and in the fixed organic form including phytic acid and phosphoesteric compounds. However, the bioavailability of bound phosphorous could be enhanced by the use of phosphate solubilizing microorganisms such as bacteria and fungi. The phytases are widespread in an environment and have been isolated from different sources comprising bacteria and fungi.MethodologyIn current studies, we show the successful use of gamma rays and EMS (Ethyl Methane Sulphonate) mutagenesis for enhanced activity of phytases in a fungal strain Sporotrichum thermophile.ResultsWe report an improved strain ST2 that could produce a clear halo zone around the colony, up to 24 mm. The maximum enzymatic activity was found of 382 U/mL on pH 5.5. However, the phytase activity was improved to 387 U/ml at 45 °C. We also report that the mutants produced through EMS showed the greater potential for phytase production.ConclusionThe current study highlights the potential of EMS mutagenesis for strain improvement over physical mutagens.  相似文献   
52.
Extremophiles - The gene-encoding Indole-3-glycerol phosphate synthase, a key enzyme involved in the cyclization of 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate, from Pyrococcus furiosus...  相似文献   
53.
Reduced levels of high-density lipoproteins (HDL) in non-obese and obese states are associated with increased risk for the development of coronary artery disease. Therefore, it is imperative to determine the mechanisms responsible for reduced HDL in obese states and, conversely, to examine therapies aimed at increasing HDL levels in these individuals. This paper examines the multiple causes for reduced HDL in obese states and the effect of exercise and diet--two non-pharmacologic therapies--on HDL metabolism in humans. In general, the concentration of HDL-cholesterol is adversely altered in obesity, with HDL-cholesterol levels associated with both the degree and distribution of obesity. More specifically, intra-abdominal visceral fat deposition is an important negative correlate of HDL-cholesterol. The specific subfractions of HDL that are altered in obese states include the HDL2, apolipoprotein A-I, and pre-beta1 subfractions. Decreased HDL levels in obesity have been attributed to both an enhancement in the uptake of HDL2 by adipocytes and an increase in the catabolism of apolipoprotein A-I on HDL particles. In addition, there is a decrease in the conversion of the pre-beta1 subfraction, the initial acceptor of cholesterol from peripheral cells, to pre-beta2 particles. Conversely, as a means of reversing the decrease in HDL levels in obesity, sustained weight loss is an effective method. More specifically, weight loss achieved through exercise is more effective at raising HDL levels than dieting. Exercise mediates positive effects on HDL levels at least partly through changes in enzymes of HDL metabolism. Increased lipid transfer to HDL by lipoprotein lipase and reduced HDL clearance by hepatic triglyceride lipase as a result of endurance training are two important mechanisms for increases in HDL observed from exercise.  相似文献   
54.
Nonenzymatic covalent binding (glycation) of reactive aldehydes (from glucose or metabolic processes) to low-density lipoproteins has been previously shown to result in lipid accumulation in a murine macrophage cell line. The formation of such lipid-laden cells is a hallmark of atherosclerosis. In this study, we characterize lipid accumulation in primary human monocyte-derived macrophages, which are cells of immediate relevance to human atherosclerosis, on exposure to low-density lipoprotein glycated using methylglyoxal or glycolaldehyde. The time course of cellular uptake of low-density lipoprotein-derived lipids and protein has been characterized, together with the subsequent turnover of the modified apolipoprotein B-100 (apoB) protein. Cholesterol and cholesteryl ester accumulation occurs within 24 h of exposure to glycated low-density lipoprotein, and increases in a time-dependent manner. Higher cellular cholesteryl ester levels were detected with glycolaldehyde-modified low-density lipoprotein than with methylglyoxal-modified low-density lipoprotein. Uptake was significantly decreased by fucoidin (an inhibitor of scavenger receptor SR-A) and a mAb to CD36. Human monocyte-derived macrophages endocytosed and degraded significantly more (125)I-labeled apoB from glycolaldehyde-modified than from methylglyoxal-modified, or control, low-density lipoprotein. Differences in the endocytic and degradation rates resulted in net intracellular accumulation of modified apoB from glycolaldehyde-modified low-density lipoprotein. Accumulation of lipid therefore parallels increased endocytosis and, to a lesser extent, degradation of apoB in human macrophages exposed to glycolaldehyde-modified low-density lipoprotein. This accumulation of cholesteryl esters and modified protein from glycated low-density lipoprotein may contribute to cellular dysfunction and the increased atherosclerosis observed in people with diabetes, and other pathologies linked to exposure to reactive carbonyls.  相似文献   
55.

From the 1950s onwards, programmes to promote aquaculture and improve capture fisheries in East Africa have relied heavily on the promise held by introduced species. In Tanzania these introductions have been poorly documented. Here we report the findings of surveys of inland water bodies across Tanzania between 2011 and 2017 that clarify distributions of tilapiine cichlids of the genus Oreochromis. We identified Oreochromis from 123 sampling locations, including 14 taxa restricted to their native range and three species that have established populations beyond their native range. Of these three species, the only exotic species found was blue-spotted tilapia (Oreochromis leucostictus), while Nile tilapia (Oreochromis niloticus) and Singida tilapia (Oreochromis esculentus), which are both naturally found within the country of Tanzania, have been translocated beyond their native range. Using our records, we developed models of suitable habitat for the introduced species based on recent (1960–1990) and projected (2050, 2070) East African climate. These models indicated that presence of suitable habitat for these introduced species will persist and potentially expand across the region. The clarification of distributions provided here can help inform the monitoring and management of biodiversity, and inform policy related to the future role of introduced species in fisheries and aquaculture.

  相似文献   
56.
Plant and Soil - To screen plant-associated Burkholderia strains for plant probiotic traits including allelochemical metabolism and understand their role on rice allelopathy using a...  相似文献   
57.
N-benzhydrylpiperazine and 1,3,4-oxadiazoles are pharmacologically active scaffolds which exhibits significant inhibitory growth effects against various cancer cells, however, antiproliferation effects and the underlying mechanism for inducing apoptosis for aforementioned scaffolds addressing HeLa cancer cells remains uncertain. In this study, N-benzhydrylpiperazine clubbed with 1,3,4-oxadiazoles ( 4a–4h ) were synthesized, subsequently characterized using high resolution spectroscopic techniques and eventually evaluated for their antiproliferation potential by inducing apoptosis in HeLa cancer cells. The MTT assay screening results revealed that among all, compound 4d ( N-benzhydryl-4-((5-(4-aminophenyl)-1,3,4-oxadiazol-2-yl)methyl)piperazine) in particular, exhibited IC 50 value of 28.13 ± 0.21 μg/mL and significantly inhibited the proliferation of HeLa cancer cells in concentration-dependent manner. The in vitro anticancer assays for treated HeLa cells resulted in alterations in the cell morphology, reduction in colony formation, and inhibition of cell migration in concentration-dependent treatment. Furthermore, G2/M phase arrest, variations in the nuclear morphology, degradation of chromosomal DNA confirmed the ongoing apoptosis in treated HeLa cells. Increase in the expression of cytochrome C and caspase-3 confirmed the involvement of intrinsic mitochondrial pathway regulating the cell death. Also, elevation in reactive oxygen species level and loss of mitochondrial membrane potential signified that compound 4d induced apoptosis in HeLa cells by generating the oxidative stress. Therefore, compound 4d may act as a potent chemotherapeutic agent against human cervical cancer.  相似文献   
58.
Pre-mRNA processing is an essential mechanism for the generation of mature mRNA and the regulation of gene expression in eukaryotic cells. While defects in pre-mRNA processing have been implicated in a number of diseases their involvement in metabolic pathologies is still unclear. Here, we show that both alternative splicing and alternative polyadenylation, two major steps in pre-mRNA processing, are significantly altered in non-alcoholic fatty liver disease (NAFLD). Moreover, we find that Serine and Arginine Rich Splicing Factor 10 (SRSF10) binding is enriched adjacent to consensus polyadenylation motifs and its expression is significantly decreased in NAFLD, suggesting a role mediating pre-mRNA dysregulation in this condition. Consistently, inactivation of SRSF10 in mouse and human hepatocytes in vitro, and in mouse liver in vivo, was found to dysregulate polyadenylation of key metabolic genes such as peroxisome proliferator-activated receptor alpha (PPARA) and exacerbate diet-induced metabolic dysfunction. Collectively our work implicates dysregulated pre-mRNA polyadenylation in obesity-induced liver disease and uncovers a novel role for SRSF10 in this process.  相似文献   
59.
Cellular proteins often have multiple and diverse functions. This is illustrated with protein Spir-1 that is an actin nucleator, but, as shown here, also functions to enhance innate immune signalling downstream of RNA sensing by RIG-I/MDA-5. In human and mouse cells lacking Spir-1, IRF3 and NF-κB-dependent gene activation is impaired, whereas Spir-1 overexpression enhanced IRF3 activation. Furthermore, the infectious virus titres and sizes of plaques formed by two viruses that are sensed by RIG-I, vaccinia virus (VACV) and Zika virus, are increased in Spir-1 KO cells. These observations demonstrate the biological importance of Spir-1 in the response to virus infection. Like cellular proteins, viral proteins also have multiple and diverse functions. Here, we also show that VACV virulence factor K7 binds directly to Spir-1 and that a diphenylalanine motif of Spir-1 is needed for this interaction and for Spir-1-mediated enhancement of IRF3 activation. Thus, Spir-1 is a new virus restriction factor and is targeted directly by an immunomodulatory viral protein that enhances virus virulence and diminishes the host antiviral responses.  相似文献   
60.
Bone is a dynamic tissue which, through the process of bone remodeling in the mature skeleton, renews itself during normal function and adapts to mechanical loads. It is, therefore, important to understand the effect of remodeling on the mechanical function of bone, as well as the effect of the inherent time lag in the remodeling process. In this study, we develop a constitutive model for bone remodeling which includes a number of relevant mechanical and biological processes and use this model to address differences in the remodeling behavior as a volume element of bone is placed in disuse or overload. The remodeling parameters exhibited damped oscillatory behavior as the element was placed in disuse, with the amplitude of the oscillations increasing as the severity of disuse increased. In overload situations, the remodeling parameters exhibited critically sensitive behavior for loads beyond a threshold value. These results bear some correspondence to experimental findings, suggesting that the model may be useful when examining the importance of transient responses for bone in disuse, and for investigating the role fatigue damage removal plays in preventing or causing stress fractures. In addition, the constitutive algorithm is currently being employed in finite element simulations of bone adaptation to predict important features of the internal structure of the normal femur, as well as to study bone diseases and their treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号