首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   8篇
  2023年   4篇
  2022年   5篇
  2021年   14篇
  2020年   2篇
  2019年   8篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   14篇
  2013年   20篇
  2012年   19篇
  2011年   14篇
  2010年   13篇
  2009年   11篇
  2008年   11篇
  2007年   13篇
  2006年   14篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  1999年   1篇
  1987年   3篇
  1986年   1篇
  1980年   1篇
排序方式: 共有209条查询结果,搜索用时 31 毫秒
41.
Anterior temporal lobectomy (ATL) is commonly adopted to control medically intractable temporal lobe epilepsy (TLE). Depending on the side of resection, the degree to which Wallerian degeneration and adaptive plasticity occur after ATL has important implications for understanding cognitive and clinical outcome. We obtained diffusion tensor imaging from 24 TLE patients (12 left) before and after surgery, and 12 matched controls at comparable time intervals. Voxel-based analyses were performed on fractional anisotropy (FA) before and after surgery. Areas with postoperative FA increase were further investigated to distinguish between genuine plasticity and processes related to the degeneration of crossing fibers. Before surgery, both patient groups showed bilateral reduced FA in numerous tracts, but left TLE patients showed more extensive effects, including language tracts in the contralateral hemisphere (superior longitudinal fasciculus and uncinate). After surgery, FA decreased ipsilaterally in both ATL groups, affecting the fornix, uncinate, stria terminalis, and corpus callosum. FA increased ipsilaterally along the superior corona radiata in both left and right ATL groups, exceeding normal FA values. In these clusters, the mode of anisotropy increased as well, confirming fiber degeneration in an area with crossing fibers. In left ATL patients, pre-existing low FA values in right superior longitudinal and uncinate fasciculi normalized after surgery, while MO values did not change. Preoperative verbal fluency correlated with FA values in all areas that later increased FA in left TLE patients, but postoperative verbal fluency correlated only with FA of the right superior longitudinal fasciculus. Our results demonstrate that genuine reorganization occurs in non-dominant language tracts after dominant hemisphere resection, a process that may help implement the inter-hemispheric shift of language activation found in fMRI studies. The results indicate that left TLE patients, despite showing more initial white matter damage, have the potential for greater adaptive changes postoperatively than right TLE patients.  相似文献   
42.
Presenilin-1 (PS1) protein acts as passive ER Ca2+ leak channels that facilitate passive Ca2+ leak across ER membrane. Mutations in the gene encoding PS1 protein cause neurodegeneration in the brains of patients with familial Alzheimer’s disease (FAD). FADPS1 mutations abrogate the function of ER Ca2+ leak channel activity in human neuroblastoma SK-N-SH cells in vitro (Das et al., J Neurochem 122(3):487–500, 2012) and in mouse embryonic fibroblasts. Consequently, genetic deletion or mutations of the PS1 gene cause calcium (Ca2+) signaling abnormalities leading to neurodegeneration in FAD patients. By analogy with other known ion channels it has been proposed that the functional PS1 channels in ER may be multimers of several PS1 subunits. To test this hypothesis, we conjugated the human PS1 protein with an NH2-terminal YFP-tag and a COOH-terminal CFP-tag. As expected YFP–PS1, and PS1–CFP were found to be expressed on the plasma membranes by TIRF microscopy, and both these fusion proteins increased ER Ca2+ leak channel activity similar to PS1 (WT) in SK-N-SH cells, as determined by functional calcium imaging. PS1–CFP was either expressed alone or together with YFP–PS1 into SK-N-SH cell line and the interaction between YFP–PS1 and PS1–CFP was determined by Förster resonance energy transfer analysis. Our results suggest interaction between YFP–PS1 and PS1–CFP confirming the presence of a dimeric or multimeric form of PS1 in SK-N-SH cells. Lateral diffusion of PS1–CFP and YFP–PS1 in the plasma membrane of SK-N-SH cells was measured in the absence or in the presence of glycerol by fluorescence correlation spectroscopy to show that both COOH-terminal and NH2-terminal of human PS1 are located on the cytoplasmic side of the plasma membrane. Therefore, we conclude that both COOH-terminal and NH2-terminal of human PS1 may also be oriented on the cytosolic side of ER membrane.  相似文献   
43.
44.
45.
46.
Protein phosphorylation is a critical mechanism in the regulation of cellular biochemical pathways and phosphopeptides can play an important role in determining function. However, the use of phosphopeptides especially multiphosphorylated peptides is hampered by their low abundance, difficulty in isolation from biological samples and in their chemical synthesis. Here we describe methodologies for the Fmoc synthesis, purification and mass spectral analysis of the multiphosphorylated sequence H-[Asp-(Ser(P))2]3-Asp-OH from phosphophoryn a protein involved in dentine mineralization. Critical steps in the synthesis of phosphophoryn using Fmoc-Ser(PO3Bzl,H)-OH as the building block were double acylation steps for each residue, alternating HBTU and HATU as the acylating agents and synthesis on a chlorotrityl resin which was essential for complete removal of the benzyl-side chain protecting groups. The synthetic phosphophoryn was only effectively purified by anion exchange and size exclusion chromatography as both alkaline and acid buffers failed to aid in purification by reversed phase HPLC. MALDI-TOF analysis of phosphophoryn was achieved with good sensitivity (20 fmol/ml) and resolution using the DNA matrix 3-hydroxypicolinic acid, whereas typical protein/peptide matrices failed to provide mass spectra. The synthetic phosphophoryn peptide was found to bind calcium, binding 6 mol of calcium per mole of peptide. In conclusion the methodology described here can be easily adopted for the synthesis and analysis of a wide variety of multiphosphorylated peptides.  相似文献   
47.
48.
Toll-like receptors (TLRs) are a group of pattern recognition receptors that play a crucial role in the induction of the innate immune response against bacterial and viral infections. TLR3 has emerged as a key sensor of viral double-stranded RNA. Thus, a clearer understanding of the biological processes that modulate TLR3 signaling is essential. Limited studies have applied proteomics toward understanding the dynamics of TLR signaling. Herein, a proteomics approach identified 14-3-3ϵ and 14-3-3σ proteins as new members of the TLR signaling complex. Toward the functional characterization of 14-3-3ϵ and 14-3-3σ in TLR signaling, we have shown that both of these proteins impair TLR2, TLR3, TLR4, TLR7/8, and TLR9 ligand-induced IL-6, TNFα, and IFN-β production. We also show that 14-3-3ϵ and 14-3-3σ impair TLR2-, TLR3-, TLR4-, TLR7/8-, and TLR9-mediated NF-κB and IFN-β reporter gene activity. Interestingly, although the 14-3-3 proteins inhibit poly(I:C)-mediated RANTES production, 14-3-3 proteins augment Pam3CSK4, LPS, R848, and CpG-mediated production of RANTES (regulated on activation normal T cell expressed and secreted) in a Mal (MyD88 adaptor-like)/MyD88-dependent manner. 14-3-3ϵ and 14-3-3σ also bind to the TLR adaptors and to both TRAF3 and TRAF6. Our study conclusively shows that 14-3-3ϵ and 14-3-3σ play a major regulatory role in balancing the host inflammatory response to viral and bacterial infections through modulation of the TLR signaling pathway. Thus, manipulation of 14-3-3 proteins may represent novel therapeutic targets for inflammatory conditions and infections.  相似文献   
49.
Liver Receptor Homolog-1 (LRH-1; NR5A2) belongs to the orphan nuclear receptor superfamily, and plays vital roles in early development, cholesterol homeostasis, steroidogenesis and certain diseases, including cancer. It is expressed in embryonic stem cells, adult liver, intestine, pancreas and ovary. It binds to DNA as a monomer and is regulated by various ligand-dependent and -independent mechanisms. Recent work identified synthetic ligands for LRH-1; such compounds may yield useful therapeutics for a range of pathologic conditions associated with aberrant expression and activity of LRH-1.  相似文献   
50.
The genetic factors responsible for the regulation of cell division in Mycobacterium tuberculosis are largely unknown. We showed that exposure of M. tuberculosis to DNA damaging agents, or to cephalexin, or growth of M. tuberculosis in macrophages increased cell length and sharply elevated the expression of Rv2719c, a LexA-controlled gene. Overexpression of Rv2719c in the absence of DNA damage or of antibiotic treatment also led to filamentation and reduction in viability both in broth and in macrophages indicating a correlation between Rv2719c levels and cell division. Overproduction of Rv2719c compromised midcell localization of FtsZ rings, but had no effect on the intracellular levels of FtsZ. In vitro, the Rv2719c protein did not interfere with the GTP-dependent polymerization activity of FtsZ indicating that the effects of Rv2719c on Z-ring assembly are indirect. Rv2719c protein exhibited mycobacterial murein hydrolase activity that was localized to the N-terminal 110 amino acids. Visualization of nascent peptidoglycan (PG) synthesis zones by probing with fluoresceinated vancomycin (Van-FL) and localization of green fluorescent protein-Rv2719c fusion suggested that the Rv2719c activity is targeted to potential PG synthesis zones. We propose that Rv2719c is a potential regulator of M. tuberculosis cell division and that its levels, and possibly activities, are modulated under a variety of growth conditions including growth in vivo and during DNA damage, so that the assembly of FtsZ-rings, and therefore the cell division, can proceed in a regulated manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号