首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2035篇
  免费   86篇
  国内免费   3篇
  2024年   3篇
  2023年   11篇
  2022年   26篇
  2021年   37篇
  2020年   35篇
  2019年   34篇
  2018年   42篇
  2017年   59篇
  2016年   60篇
  2015年   76篇
  2014年   88篇
  2013年   147篇
  2012年   180篇
  2011年   141篇
  2010年   113篇
  2009年   104篇
  2008年   134篇
  2007年   110篇
  2006年   108篇
  2005年   127篇
  2004年   91篇
  2003年   109篇
  2002年   77篇
  2001年   23篇
  2000年   19篇
  1999年   13篇
  1998年   17篇
  1997年   12篇
  1996年   8篇
  1995年   12篇
  1994年   11篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   10篇
  1984年   6篇
  1983年   5篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   8篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
排序方式: 共有2124条查询结果,搜索用时 46 毫秒
61.
The human gut harbors diverse bacterial species in the gut, which play an important role in the metabolism of food and host health. Recent studies have also revealed their role in altering the pharmacological properties and efficacy of oral drugs through promiscuous metabolism. However, the atomistic details of the enzyme-drug interactions of gut bacterial enzymes which can potentially carry out the metabolism of drug molecules are still scarce. A well-known example is the FDA drug amphetamine (a central nervous system stimulant), which has been predicted to undergo promiscuous metabolism by gut bacteria. Therefore, to understand the atomistic details and energy landscape of the gut microbial enzyme-mediated metabolism of this drug, molecular dynamics studies were performed. It was observed that amphetamine binds to tyramine oxidase from the Escherichia coli strain present in the human gut microbiota at the binding site harboring polar and nonpolar amino acids. The stability analysis of amphetamine at the binding site showed that the binding is stable and the free energy for the binding of amphetamine was found to be ~ −51.71 kJ/mol. The insights provided by this study on promiscuous metabolism of amphetamine by a gut enzyme will be very useful to improve the efficacy of the drug.  相似文献   
62.
63.
Radioligand therapies have opened new treatment avenues for cancer patients. They offer precise tumor targeting with a favorable efficacy-to-toxicity profile. Specifically, the kidneys, once regarded as the critical organ for radiation toxicity, also show excellent tolerance to radiation doses as high as 50–60 Gy in selected cases. However, the number of nephrons that form the structural and functional units of the kidney is determined before birth and is fixed. Thus, loss of nephrons secondary to any injury may lead to an irreversible decline in renal function over time. Our primary understanding of radiation-induced nephropathy is derived from the effects of external beam radiation on the renal tissue. With the growing adoption of radionuclide therapies, considerable evidence has been gained with regard to the occurrence of renal toxicity and its associated risk factors. In this review, we discuss the radionuclide therapies associated with the risk of nephrotoxicity, the present understanding of the factors and mechanisms that contribute to renal injury, and the current and potential methods for preventing, identifying, and managing nephrotoxicity, specifically acute onset nephropathies.  相似文献   
64.
65.
Reactive oxygen species (ROS) have been shown to mediate the effects of several growth factors and vasoactive peptides, such as epidermal growth factor, platelet-derived growth factor, and angiotensin II (AII). Endothelin-1 (ET-1) is a vasoactive peptide which also exhibits mitogenic activity in vascular smooth muscle cells (VSMCs), and is believed to contribute to the pathogenesis of vascular abnormalities such as atherosclerosis, hypertension, and restenosis after angioplasty. However, a possible role for ROS generation in mediating the ET-1 response on extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and protein tyrosine kinase 2 (Pyk2), key components of the growth-promoting and proliferative signaling pathways, has not been examined in detail. Our aim was to investigate the involvement of ROS in ET-1-mediated activation of ERK1/2, PKB, and Pyk2 in A-10 VSMCs. ET-1 stimulated ERK1/2, PKB, and Pyk2 phosphorylation in a dose- and time-dependent manner. Pretreatment of A-10 VSMCs with diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, attenuated ET-1-enhanced ERK1/2, PKB, and Pyk2 phosphorylation. In addition, in parallel with an inhibitory effect on the above signaling components, DPI also blocked ET-1-induced protein synthesis. ET-1 was also found to increase ROS production, which was suppressed by DPI treatment. N-Acetylcysteine, a ROS scavenger, exhibited a response similar to that of DPI and inhibited ET-1-stimulated ERK1/2, PKB, and Pyk2 phosphorylation. These results demonstrate that ROS are critical mediators of ET-1-induced signaling events linked to growth-promoting proliferative and hypertrophic pathways in VSMCs.  相似文献   
66.
67.
Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR   总被引:2,自引:0,他引:2  
The metalloregulatory protein ArsR, which offers high affinity and selectivity toward arsenite, was overexpressed in Escherichia coli in an attempt to increase the bioaccumulation of arsenic. Overproduction of ArsR resulted in elevated levels of arsenite bioaccumulation but also a severe reduction in cell growth. Incorporation of an elastin-like polypeptide as the fusion partner to ArsR (ELP153AR) improved cell growth by twofold without compromising the ability to accumulate arsenite. Resting cells overexpressing ELP153AR accumulated 5- and 60-fold-higher levels of arsenate and arsenite than control cells without ArsR overexpression. Conversely, no significant improvement in Cd(2+) or Zn(2+) accumulation was observed, validating the specificity of ArsR. The high affinity of ArsR allowed 100% removal of 50 ppb of arsenite from contaminated water with these engineered cells, providing a technology useful to comply with the newly approved U.S. Environmental Protection Agency limit of 10 ppb. These results open up the possibility of using cells overexpressing ArsR as an inexpensive, high-affinity ligand for arsenic removal from contaminated drinking and ground water.  相似文献   
68.
An amperometric biosensor was developed to estimate galactose in human blood serum. Monolayers of poly(3-hexyl thiophene) were placed on glass plates coated with indium tin oxide formed by dispensing a mixed solution of stearic acid in chloroform on to a water sub-phase. Galactose oxidase was mixed with poly(3-hexyl thiophene)/stearic acid in chloroform and dispensed on to the air-water interface of Langmuir-Blodgett trough. These monolayers were transferred on to glass plates which were used as working electrodes with platinum as a reference electrode. The amperometric galactose biosensor thus fabricated had a linear response from 0.05 to 0.5 g galactose l(-1) in blood serum. The normal level in blood is < 0.05 g galactose l(-1) in adults and 0-0.2 g galactose l(-1) in infants. In case of galactosemia, this increases to above 0.2 g galactose l(-1) in infants.  相似文献   
69.
We examined the effects of peroxynitrite pre-treatment on sarco/endoplasmic reticulum Ca(2+) (SERCA) pump in pig coronary artery smooth muscle and endothelium. In saponin-permeabilized cells, smooth muscle showed much greater rates of the SERCA Ca(2+) pump-dependent (45)Ca(2+) uptake/mg protein than did the endothelial cells. Peroxynitrite treatment of cells inhibited the SERCA pump more severely in smooth muscle cells than in endothelial cells. To determine implications of this observation, we next examined the effect of the SERCA pump inhibitor cyclopiazonic acid (CPA) on intracellular Ca(2+) concentration of intact cultured cells. CPA produced cytosolic Ca(2+) transients in cultured endothelial and smooth muscle cells. Pre-treatment with peroxynitrite (200 microM) inhibited the Ca(2+) transients in the smooth muscle but not in the endothelial cells. CPA contracts de-endothelialized artery rings and relaxes precontracted arteries with intact endothelium. Peroxynitrite (250 microM) pre-treatment inhibited contraction in the de-endothelialized artery rings, but not the endothelium-dependent relaxation. Thus, endothelial cells appear to be more resistant than smooth muscle to the effects of peroxynitrite at the levels of SERCA pump activity, CPA-induced Ca(2+) transients in cultured cells, and the effects of CPA on contractility. The greater resistance of endothelium to peroxynitrite may play a protective role in pathological conditions such as ischemia-reperfusion when excess free radicals are produced.  相似文献   
70.
Bioactive properties of certain amphipathic peptides are amplified when self-associated with sterically stabilized micelles (SSM) composed of polyethylene glycol (PEG)-conjugated phospholipids. The purpose of this study was to determine the effects of amphipathic peptide molecular mass and PEG chain length on vasoreactivity evoked by vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide, and pituitary adenylate cyclase-activating peptide(1-38) (PACAP(1-38)), a 38-amino acid neuropeptide, associated with PEGylated phospholipid micelles in vivo. Both peptides were incubated for 2 h with SSM composed of PEG with molecular mass of 2000 or 5000 grafted onto distearoyl-phosphatidylethanolamine (DSPE-PEG2000 or DSPE-PEG5000) before use. We found that regardless of peptide molecular mass, PEG chain length had no significant effects on peptide-SSM interactions. Using intravital microscopy, VIP associated with DSPE-PEG5000 SSM or DSPE-PEG2000 SSM incubated at 25 degrees C evoked similar vasodilation in the intact hamster cheek pouch microcirculation. Likewise, PACAP(1-38)-induced vasodilation was PEG chain length-independent. However, SSM-associated PACAP(1-38) evoked significantly smaller vasodilation than that evoked by SSM-associated VIP (P < 0.05) at 25 degrees C. When the incubation temperature was increased to 37 degrees C, SSM-associated PACAP(1-38)-induced vasodilation was now similar to that of SSM-associated VIP. This response was associated with a corresponding increase in alpha-helix content of both peptides in the presence of phospholipids. Collectively, these data indicate that for a larger amphipathic peptide, such as PACAP(1-38), greater kinetic energy or longer incubation period is required to optimize peptide-SSM interactions and amplify peptide bioactivity in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号