首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   45篇
  562篇
  2023年   2篇
  2022年   3篇
  2021年   16篇
  2020年   8篇
  2019年   7篇
  2018年   17篇
  2017年   12篇
  2016年   7篇
  2015年   22篇
  2014年   25篇
  2013年   37篇
  2012年   40篇
  2011年   37篇
  2010年   27篇
  2009年   20篇
  2008年   27篇
  2007年   28篇
  2006年   29篇
  2005年   21篇
  2004年   25篇
  2003年   14篇
  2002年   18篇
  2001年   14篇
  2000年   13篇
  1999年   10篇
  1998年   2篇
  1996年   4篇
  1995年   2篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1984年   3篇
  1982年   3篇
  1980年   6篇
  1979年   6篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1964年   1篇
排序方式: 共有562条查询结果,搜索用时 15 毫秒
11.
Histone acetyltransferase 1 (Hat1) is responsible for the acetylation of newly synthesized histone H4 on lysines 5 and 12 during the process of chromatin assembly. To understand the broader biological role of Hat1, we have generated a conditional mouse knockout model of this enzyme. We previously reported that Hat1 is required for viability and important for mammalian development and genome stability. In this study, we show that haploinsufficiency of Hat1 results in a significant decrease in lifespan. Defects observed in Hat1+/? mice are consistent with an early‐onset aging phenotype. These include lordokyphosis (hunchback), muscle atrophy, minor growth retardation, reduced subcutaneous fat, cancer, and paralysis. In addition, the expression of Hat1 is linked to the normal aging process as Hat1 mRNA and protein becomes undetectable in many tissues in old mice. At the cellular level, fibroblasts from Hat1 haploinsufficient embryos undergo early senescence and accumulate high levels of p21. Hat1+/? mouse embryonic fibroblasts (MEFs) display modest increases in endogenous DNA damage but have significantly higher levels of reactive oxygen species (ROS). Consistently, further studies show that Hat1?/? MEFs exhibit mitochondrial defects suggesting a critical role for Hat1 in mitochondrial function. Taken together, these data show that loss of Hat1 induces multiple hallmarks of early‐onset aging.  相似文献   
12.
Bacillus subtilis cells expressing a hybrid protein (Lvsss-Cat) consisting of the B. amyloliquefaciens levansucrase signal peptide fused to B. pumilus chloramphenicol acetyltransferase (Cat) are unable to export Cat protein into the growth medium. A series of tripartite protein fusions was constructed by inserting various lengths of the Cat sequences between the levansucrase signal peptide and staphylococcal protein A or Escherichia coli alkaline phosphatase. Biochemical characterization of the various Cat protein fusions revealed that multiple regions in the Cat protein were causing the export defect.  相似文献   
13.
Recent studies have shown that some flavonoids are modulators of proinflammatory cytokine production. In this study, velutin, a unique flavone isolated from the pulp of açaí fruit (Euterpe oleracea Mart.), was examined for its effects in reducing lipopolysaccharide-induced proinflammatory cytokine tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in RAW 264.7 peripheral macrophages and mice peritoneal macrophages. Three other structurally similar and well-studied flavones, luteolin, apigenin and chrysoeriol, were included as controls and for comparative purposes. Velutin exhibited the greatest potency among all flavones in reducing TNF-α and IL-6 production. Velutin also showed the strongest inhibitory effect in nuclear factor (NF)-κB activation (as assessed by secreted alkaline phosphatase reporter assay) and exhibited the greatest effects in blocking the degradation of inhibitor of NF-κB as well as in inhibiting mitogen-activated protein kinase p38 and JNK phosphorylation; all of these are important signaling pathways involved in production of TNF-α and IL-6. The present study led to the discovery of a strong anti-inflammatory flavone, velutin. This compound effectively inhibited the expression of proinflammatory cytokines TNF-α and IL-6 in low micromole levels by inhibiting NF-κB activation and p38 and JNK phosphorylation.  相似文献   
14.
Abstract

The role of glutathione and dithiothreitol as reductants supporting arsenate reductase activity in root extract from the arsenic hyperaccumulator Pteris vittata was examined. The two reductants in combination enhanced arsenate reduction in vitro more than glutathione alone. The implications of these results for in vivo arsenate reduction are discussed.  相似文献   
15.
16.
Changes in gene expression associated with skeletal muscle atrophy due to aging are distinct from those due to disuse, suggesting that the response of old muscle to inactivity may be altered. The goal of this study was to identify changes in muscle gene expression that may contribute to loss of adaptability of old muscle. Muscle atrophy was induced in young adult (6-mo) and old (32-mo) male Brown Norway/F344 rats by 2 wk of hindlimb suspension (HS), and soleus muscles were analyzed by cDNA microarrays. Overall, similar changes in gene expression with HS were observed in young and old muscles for genes encoding proteins involved in protein folding (heat shock proteins), muscle structure, and contraction, extracellular matrix, and nucleic acid binding. More genes encoding transport and receptor proteins were differentially expressed in the soleus muscle from young rats, while in soleus muscle from old rats more genes that encoded ribosomal proteins were upregulated. The gene encoding the cold-shock protein RNA-binding motif protein-3 (RBM3) was induced most highly with HS in muscle from old rats, verified by real-time RT-PCR, while no difference with age was observed. The cold-inducible RNA-binding protein (Cirp) gene was also overexpressed with HS, whereas cold-shock protein Y-box-binding protein-1 was not. A time course analysis of RBM3 mRNA abundance during HS showed that upregulation occurred after apoptotic nuclei and markers of protein degradation increased. We conclude that a cold-shock response may be part of a compensatory mechanism in muscles undergoing atrophy to preserve remaining muscle mass and that RBM3 may be a therapeutic target to prevent muscle loss.  相似文献   
17.
18.
Abdominal aortic aneurysm (AAA) is a common chronic degenerative disease characterized by progressive aortic dilation and rupture. The mechanisms underlying the role of α-tocopherol and β-carotene on AAA have not been comprehensively assessed. We investigated if α-tocopherol and β-carotene supplementation could attenuate AAA, and studied the underlying mechanisms utilized by the antioxidants to alleviate AAA. Four-months-old Apoe−/− mice were used in the induction of aneurysm by infusion of angiotensin II (Ang II), and were orally administered with α-tocopherol and β-carotene enriched diet for 60 days. Significant increase of LDL, cholesterol, triglycerides and circulating inflammatory cells was observed in the Ang II-treated animals, and gene expression studies showed that ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9 and MMP-12 were upregulated in the aorta of aneurysm-induced mice. Extensive plaques, aneurysm and diffusion of inflammatory cells into the tunica intima were also noticed. The size of aorta was significantly (P = 0.0002) increased (2.24±0.20 mm) in the aneurysm-induced animals as compared to control mice (1.17±0.06 mm). Interestingly, β-carotene dramatically controlled the diffusion of macrophages into the aortic tunica intima, and circulation. It also dissolved the formation of atheromatous plaque. Further, β-carotene significantly decreased the aortic diameter (1.33±0.12 mm) in the aneurysm-induced mice (β-carotene, P = 0.0002). It also downregulated ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9, MMP-12, PPAR-α and PPAR-γ following treatment. Hence, dietary supplementation of β-carotene may have a protective function against Ang II-induced AAA by ameliorating macrophage recruitment in Apoe−/− mice.  相似文献   
19.
Recently, antibacterial peptides are gaining more attention as an alternative therapeutics and food and other products from spoilage and deterioration. Antibacterial peptide producing strains were isolated from sediments of slaughterhouse sewage wastes. One among them, identified as Bacillus licheniformis inhibited the growth of several gram positive bacteria. Response surface methodology with central composite rotary design was used for optimization of fermentation medium and conditions for antibacterial peptide production. Lactose, NH(4)NO(3), yeast extract and NaCl and environmental factors such as pH, temperature and incubation period were selected as variables. Among ingredients, high concentration of yeast extract and NaCl had a positive effect on antibacterial peptide production and specific activity, respectively. Alkaline pH and high temperature favoured the production of antibacterial peptide by B. licheniformis AnBa9. Under optimized condition, B. licheniformis AnBa9 produced 25-fold higher production of antibacterial peptide than the un-optimized condition. Biochemical characteristics of the antibacterial peptides of B. licheniformis AnBa9 revealed that they are of bacteriocin type.  相似文献   
20.
Hormonal control of androgen receptor function through SIRT1   总被引:4,自引:0,他引:4       下载免费PDF全文
The NAD-dependent histone deacetylase Sir2 plays a key role in connecting cellular metabolism with gene silencing and aging. The androgen receptor (AR) is a ligand-regulated modular nuclear receptor governing prostate cancer cellular proliferation, differentiation, and apoptosis in response to androgens, including dihydrotestosterone (DHT). Here, SIRT1 antagonists induce endogenous AR expression and enhance DHT-mediated AR expression. SIRT1 binds and deacetylates the AR at a conserved lysine motif. Human SIRT1 (hSIRT1) repression of DHT-induced AR signaling requires the NAD-dependent catalytic function of hSIRT1 and the AR lysine residues deacetylated by SIRT1. SIRT1 inhibited coactivator-induced interactions between the AR amino and carboxyl termini. DHT-induced prostate cancer cellular contact-independent growth is also blocked by SIRT1, providing a direct functional link between the AR, which is a critical determinant of progression of human prostate cancer, and the sirtuins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号