首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   24篇
  2024年   2篇
  2022年   2篇
  2021年   2篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   13篇
  2013年   9篇
  2012年   14篇
  2011年   14篇
  2010年   12篇
  2009年   12篇
  2008年   16篇
  2007年   13篇
  2006年   11篇
  2005年   12篇
  2004年   15篇
  2003年   19篇
  2002年   17篇
  2001年   20篇
  2000年   11篇
  1999年   11篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   6篇
  1988年   3篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有306条查询结果,搜索用时 31 毫秒
211.
Lau J  Cane DE  Khosla C 《Biochemistry》2000,39(34):10514-10520
The priming of many modular polyketide synthases is catalyzed by a loading acyltransferase-acyl carrier protein (AT(L)-ACP(L)) didomain which initiates polyketide biosynthesis by transferring a primer unit to the ketosynthase domain of the first module. Because the AT(L) domain influences the choice of the starter unit incorporated into the polyketide backbone, its specificity is of considerable interest. The AT(L)-ACP(L) didomain of the 6-deoxyerythronolide B synthase (DEBS) was functionally expressed in Escherichia coli. Coexpression of the Sfp phosphopantetheinyl transferase from Bacillus subtilis in E. coli leads to efficient posttranslational modification of the ACP(L) domain with a phosphopantetheine moiety. Competition experiments were performed with the holo-protein to determine the relative rates of incorporation of a variety of unnatural substrates in the presence of comparable concentrations of labeled acetyl-CoA. Our results showed that the loading didomain of DEBS can accept a surprisingly broad range of substrates, although it exhibits a preference for unbranched alkyl chain substrates over branched alkyl chain, polar, aromatic, and charged substrates. In particular, its tolerance toward acetyl- and butyryl-CoA is unexpectedly strong. The studies described here present an attractive prototype for the expression, analysis, and engineering of acyltransferase domains in modular polyketide synthases.  相似文献   
212.
Histamine reduced sperm viability in a dose- and time-dependent manner, accompanied by rise in intrasperm Ca2+. Further, 2',4'-dichlorobenzamil hydrochloride (DBZ), a Na+-Ca2+ exchange inhibitor, known to elevate intrasperm Ca2+, potentiated both, elevation of intrasperm Ca2+ and spermicidal action of histamine. Pretreatment of sperm with very low doses of H1-receptor antagonists (chlorpheniramine, promethazine or diphenhydramine) prevented the histamine-induced elevation of intrasperm Ca2+ as well as its spermicidal action. However, pretreatment with famotidine, a H2-receptor antagonist did not produce such a protective action. The results strongly suggest that histamine elicits its spermicidal action via H1-receptors present on sperm cells.  相似文献   
213.
Bacterial aromatic polyketides such as tetracycline and doxorubicin are a medicinally important class of natural products produced as secondary metabolites by actinomyces bacteria. Their backbones are derived from malonyl-CoA units by polyketide synthases (PKSs). The nascent polyketide chain is synthesized by the minimal PKS, a module consisting of four dissociated enzymes. Although the biosynthesis of most aromatic polyketide backbones is initiated through decarboxylation of a malonyl building block (which results in an acetate group), some polyketides, such as the estrogen receptor antagonist R1128, are derived from nonacetate primers. Understanding the mechanism of nonacetate priming can lead to biosynthesis of novel polyketides that have improved pharmacological properties. Recent biochemical analysis has shown that nonacetate priming is the result of stepwise activity of two dissociated PKS modules with orthogonal molecular recognition features. In these PKSs, an initiation module that synthesizes a starter unit is present in addition to the minimal PKS module. Here we describe a general method for the engineered biosynthesis of regioselectively modified aromatic polyketides. When coexpressed with the R1128 initiation module, the actinorhodin minimal PKS produced novel hexaketides with propionyl and isobutyryl primer units. Analogous octaketides could be synthesized by combining the tetracenomycin minimal PKS with the R1128 initiation module. Tailoring enzymes such as ketoreductases and cyclases were able to process the unnatural polyketides efficiently. Based upon these findings, hybrid PKSs were engineered to synthesize new anthraquinone antibiotics with predictable functional group modifications. Our results demonstrate that (i) bimodular aromatic PKSs present a general mechanism for priming aromatic polyketide backbones with nonacetate precursors; (ii) the minimal PKS controls polyketide chain length by counting the number of atoms incorporated into the backbone rather than the number of elongation cycles; and (iii) in contrast, auxiliary PKS enzymes such as ketoreductases, aromatases, and cyclases recognize specific functional groups in the backbone rather than overall chain length. Among the anthracyclines engineered in this study were compounds with (i) more superior activity than R1128 against the breast cancer cell line MCF-7 and (ii) inhibitory activity against glucose-6-phosphate translocase, an attractive target for the treatment of Type II diabetes.  相似文献   
214.
A series of novel Mannich bases derived from 5-chloro-2-methoxybenzamide and sulfonamides/amines have been synthesised and the antibacterial activities were evaluated against various Gram positive and Gram negative strains of bacteria. Some of the synthesized compounds showed superior in vitro activities as compared to their parent sulfonamides.  相似文献   
215.
Celiac Sprue, or gluten-sensitive enteropathy, is an inheritable human disease of the small intestine that is triggered by the dietary intake of gluten. Recently, several Pro- and Gln-rich peptide sequences (most notably PQPQLPY and analogs) have been identified from gluten with potent immunogenic activity toward CD4(+) T cells from small intestinal biopsies of Celiac Sprue patients. These peptides have three unusual properties. First, they are relatively stable toward further proteolysis by gastric, pancreatic, and intestinal enzymes. Second, they are recognized and deamidated by human tissue transglutaminase (tTGase) with high selectivity. Third, tTGase-catalyzed deamidation enhances their affinity for HLA-DQ2, the disease-specific class II major histocompatibility complex heterodimer. In an attempt to seek a mechanistic explanation for these properties, we undertook secondary structural studies on PQPQLPY and its analogs. Circular dichroism studies on a series of monomeric and dimeric analogs revealed a strong polyproline II helical propensity in a subset of them. Two-dimensional nuclear magnetic resonance spectroscopic analysis confirmed a polyproline II conformation of PQPQLPY, and was also used to elucidate the secondary structure of the most helical variant, (D-P)QPQLPY. Remarkably, a strong correlation was observed between polyproline II content of naturally occurring gluten peptides and the specificity of human tTGase toward these substrates. Analogs with up to two D-amino acid residues retained both polyproline II helical content and transglutaminase affinity. Since the Michaelis constant (K(m)) is the principal determinant of tTGase specificity for naturally occurring gluten peptides and their analogs, our results suggest that the tTGase binding site may have a preference for polyproline II helical substrates. If so, these insights could be exploited for the design of selective small molecule inhibitors of this pharmacologically important enzyme.  相似文献   
216.
Celiac Sprue is a multi-factorial disease characterized by an inflammatory response to ingested wheat gluten and similar proteins in rye and barley. Proline-rich gluten peptides from wheat, rye, and barley are relatively resistant to gastrointestinal digestion, and therefore persist in the intestinal lumen to elicit immunopathology in genetically susceptible individuals. In this study, we characterize the in vitro gluten detoxifying properties of a therapeutically promising prolyl endopeptidase from Myxococcus xanthus (MX PEP), and describe the development of a prototypical enteric-coated capsule containing a pharmacologically useful dose of this enzyme. A high-cell density fed-batch fermentation process was developed for overproduction of recombinant MX PEP in E. coli, yielding 0.25-0.4 g/L purified protein. A simple, scalable purification and lyophilization procedure was established that yields >95% pure, highly active and stable enzyme as a dry powder. The dry powder was blended with excipients and encapsulated in a hard gelatin capsule. The resulting capsule was enteric coated using Eudragit L30-D55 polymer coat, which provided sufficient resistance to gastric conditions (> 1 h in 0.01 M HCl, pH 2 with pepsin) and rapid release under duodenal conditions (15-30 min release in pH 6.0 in the presence of trypsin and chymotrypsin). In conjunction with pancreatic enzymes, MX PEP breaks down whole gluten into a product mixture that is virtually indistinguishable from that generated by the Flavobacterium meningosepticum (FM) PEP as judged by chromatographic assays. Competitive studies involving selected immunogenic peptides mixed with whole gluten reveal that both PEPs have a wide range of substrate specificity. Our results support further in vitro and in vivo evaluation of the MX PEP capsule as an oral therapeutic agent for Celiac Sprue patients.  相似文献   
217.
Celiac disease is an HLA-DQ2-associated disorder characterized by an intestinal T cell response. The disease-relevant T cells secrete IFN-gamma upon recognition of gluten peptides that have been deamidated in vivo by the enzyme tissue transglutaminase (transglutaminase 2 (TG2)). The celiac intestinal mucosa contains elevated numbers of mast cells, and increased histamine secretion has been reported in celiac patients. This appears paradoxical because histamine typically biases T cell responses in the direction of Th2 instead of the Th1 pattern seen in the celiac lesions. We report that histamine is an excellent substrate for TG2, and it can be efficiently conjugated to gluten peptides through TG2-mediated transamidation. Histamine-peptide conjugates do not exert agonistic effects on histamine receptors, and scavenging of biologically active histamine by gluten peptide conjugation can have physiological implications and may contribute to the mucosal IFN-gamma response in active disease. Interestingly, TG2 is able to hydrolyze the peptide-histamine conjugates when the concentrations of substrates are lowered, thereby releasing deamidated gluten peptides that are stimulatory to T cells.  相似文献   
218.
219.
A barrier to heterologous production of complex polyketides in Escherichia coli is the lack of (2S)-methylmalonyl-CoA, a common extender substrate for the biosynthesis of complex polyketides by modular polyketide synthases. One biosynthetic route to (2S)-methylmalonyl-CoA involves the sequential actions of two enzymes, methylmalonyl-CoA mutase and methylmalonyl-CoA epimerase, which convert succinyl-CoA to (2R)- and then to (2S)-methylmalonyl-CoA. As reported [McKie, N., et al. (1990) Biochem. J. 269, 293-298; Haller, T., et al. (2000) Biochemistry 39, 4622-4629], when genes encoding coenzyme B(12)-dependent methylmalonyl-CoA mutases were expressed in E. coli, the inactive apo-enzyme was produced. However, when cells harboring the mutase genes from Propionibacterium shermanii or E. coli were treated with the B12 precursor hydroxocobalamin, active holo-enzyme was isolated, and (2R)-methylmalonyl-CoA represented approximately 10% of the intracellular CoA pool. When the E. coli BAP1 cell line [Pfeifer, B. A., et al. (2001) Science 291, 1790-1792] harboring plasmids that expressed P. shermanii methylmalonyl-CoA mutase, Streptomyces coelicolor methylmalonyl-CoA epimerase, and the polyketide synthase DEBS (6-deoxyerythronolide B synthase) was fed propionate and hydroxocobalamin, the polyketide 6-deoxyerythronolide B (6-dEB) was produced. Isotopic labeling studies using [(13)C]propionate showed that the starter unit for polyketide synthesis was derived exclusively from exogenous propionate, while the extender units stemmed from methylmalonyl-CoA via the mutase-epimerase pathway. Thus, the introduction of an engineered mutase-epimerase pathway in E. coli enabled the uncoupling of carbon sources used to produce starter and extender units of polyketides.  相似文献   
220.
Binding of the Tetrahymena group I ribozyme's oligonucleotide substrate occurs in two steps: P1 duplex formation with the ribozyme's internal guide sequence which forms an "open complex" is followed by docking of the P1 duplex into tertiary interactions within the catalytic core which forms a "closed complex". By systematically varying substrate length, pH, and temperature, we have identified conditions under which P1 duplex formation, P1 docking, or the chemical cleavage step limits the rate of the ribozyme reaction. This has enabled characterization of the individual steps as a function of substrate length, pH, and temperature, leading to several conclusions. (1) The rate constant for formation of the open complex is largely independent of substrate length, pH, and temperature, analogous to that of duplex formation in solution. This extends previous results suggesting that open complex formation entails mainly secondary structure formation and strengthens the view that the second binding step, P1 docking, represents a simple transition from secondary to tertiary structure in the context of an otherwise folded RNA. (2) The temperature dependence of the rate constant for P1 docking yields a negative activation entropy, in contrast to the positive entropy change previously observed for the docking equilibrium. This suggests a model in which tertiary interactions are not substantially formed in the transition state for P1 docking. (3) Shortening the substrate by three residues decreases the equilibrium constant for P1 docking by 200-fold, suggesting that the rigidity imposed by full-length duplex formation facilitates formation of tertiary interactions. (4) Once docked, shortened substrates are cleaved at rates within 3-fold of that for the full-length substrate. Thus, all the active site interactions required to accelerate the chemical cleavage event are maintained with shorter substrates. (5) The rate constant of approximately 10(3) min(-1) obtained for P1 docking is significantly faster than the other steps previously identified in the tertiary folding of this RNA. Nevertheless, P1 docking presumably follows other tertiary folding steps because the P1 duplex docks into a core that is formed only upon folding of the rest of the ribozyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号