首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1967篇
  免费   88篇
  国内免费   2篇
  2057篇
  2024年   5篇
  2023年   11篇
  2022年   21篇
  2021年   37篇
  2020年   38篇
  2019年   34篇
  2018年   45篇
  2017年   60篇
  2016年   66篇
  2015年   58篇
  2014年   75篇
  2013年   140篇
  2012年   161篇
  2011年   139篇
  2010年   109篇
  2009年   99篇
  2008年   126篇
  2007年   111篇
  2006年   109篇
  2005年   119篇
  2004年   90篇
  2003年   111篇
  2002年   77篇
  2001年   26篇
  2000年   20篇
  1999年   14篇
  1998年   19篇
  1997年   13篇
  1996年   9篇
  1995年   14篇
  1994年   10篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   11篇
  1984年   7篇
  1983年   2篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
排序方式: 共有2057条查询结果,搜索用时 15 毫秒
41.
TGF-β has been implicated in the proliferation and differentiation of chondrocytes and osteoblasts. However, the in vivo function of TGF-β in skeletal development is unclear. In this study, we investigated the role of TGF-β signaling in growth plate development by creating mice with a conditional knockout of the TGF-β type I receptor ALK5 (ALK5CKO) in skeletal progenitor cells using Dermo1-Cre mice. ALK5CKO mice had short and wide long bones, reduced bone collars, and trabecular bones. In ALK5CKO growth plates, chondrocytes proliferated and differentiated, but ectopic cartilaginous tissues protruded into the perichondrium. In normal growth plates, ALK5 protein was strongly expressed in perichondrial progenitor cells for osteoblasts, and in a thin chondrocyte layer located adjacent to the perichondrium in the peripheral cartilage. ALK5CKO growth plates had an abnormally thin perichondrial cell layer and reduced proliferation and differentiation of osteoblasts. These defects in the perichondrium likely caused the short bones and ectopic cartilaginous protrusions. Using tamoxifen-inducible Cre-ER™-mediated ALK5-deficient primary calvarial cell cultures, we found that TGF-β signaling promoted osteoprogenitor proliferation, early differentiation, and commitment to the osteoblastic lineage through the selective MAPKs and Smad2/3 pathways. These results demonstrate the important roles of TGF-β signaling in perichondrium formation and differentiation, as well as in growth plate integrity during skeletal development.  相似文献   
42.
43.
44.
Competitiveness between (I) lysogenic vs. phage-indicator strains, (II) phage-resistant vs phage-sensitive strains, and (III) large plaque vs. small plaque developing strains was examined under laboratory and field conditions in order to study the involvement of these crucial phage sensitivity patterns in the competition for nodule occupancy of pigeonpea rhizobia. The phage-indicator strain (A039) exhibited higher competitiveness over the lysogenic strain (A025 Sm(r)); the phage sensitive strain (IHP-195) over the phage resistant strain (IHP 195 Sm(r)V(r)); and the large plaque developing strain (A059) over the small plaque developing strain (IHP195 Sm(r)) in association with pigeonpea cv. bahar both under laboratory and field conditions. Dual inoculation of A025 Sm(r) + A039 and A059 + IHP195 Sm(r) (mixed in equal proportion just before treatment) improved the nodule occupancy by inoculant strains against native rhizobia and resulted into higher plant dry weight and yield as compared to their application as single inoculum. The phage-resistant mutant IHP195 Sm(r)V(r) showed reduced competitiveness against native rhizobia, compared to its parental strain. The dual inoculation of parental strain and phage-resistant mutant gave the same result as the inoculation of parental strain alone.  相似文献   
45.
The methanolic extract of rhizome of Himalayan rhubarb Rheum emodi displayed mild yeast as well as mammalian intestinal alpha-glucosidase inhibitory activity. However, further fractionation of active extract led to the isolation of several potent molecules in excellent yields, displaying varying degrees of inhibition on two test models of alpha-glucosidase. Rhapontigenin, desoxyrhapontigenin, chrysophanol-8-O-beta-d-glucopyranoside, torachrysone-8-O-beta-d-glucopyranoside displayed potent yeast alpha-glucosidase inhibition. However chrysophanol-8-O-beta-d-glucopyranoside, desoxyrhaponticin and torachrysone-8-O-beta-d-glucopyranoside displayed potent to moderate mammalian alpha-glucosidase inhibitory activity. Other compounds displayed mild activity on both the tests. Except desoxyrhapontigenin and rhapontigenin that increased Vmax, other compounds including crude extract decreased the Vmax significantly (p<0.02) in yeast alpha-glucosidase test. Further kinetic analysis on mammalian alpha-glucosidase inhibition showed that chrysophanol-8-O-beta-d-glucopyranoside, desoxyrhaponticin and torachrysone-8-O-beta-d-glucopyranoside may be classified as mixed-noncompetitive inhibitors. However, desoxyrhapontigenin and rhapontigenin may be classified as modulators of enzyme activity. Presence and position of glycoside moiety in compounds appear important for better inhibition of mammalian alpha-glucosidase. This is the first report assigning particularly, mammalian intestinal alpha-glucosidase inhibitory activity to these compounds. Chrysophanol-8-O-beta-d-glucopyranoside, desoxyrhaponticin, desoxyrhapontigenin and rhapontigenin have been isolated in substantial yields from R. emodi for the first time. Therefore, these compounds may have value in the treatment and prevention of hyperglycemia associated diabetes mellitus.  相似文献   
46.
47.
Melanocarpus albomyces, a thermophilic fungus isolated from compost by enrichment culture in a liquid medium containing sugarcane bagasse, produced cellulase-free xylanase in culture medium. The fungus was unusual in that xylanase activity was inducible not only by hemicellulosic material but also by the monomeric pentosan unit of xylan but not by glucose. Concentration of bagasse-grown culture filtrate protein followed by size-exclusion and anion-exchange chromatography separated four xylanase activities. Under identical conditions of protein purification, xylanase I was absent in the xylose-grown culture filtrate. Two xylanase activities, a minor xylanase IA and a major xylanase IIIA, were purified to apparent homogeneity from bagasse-grown cultures. Both xylanases were specific forβ-1,4 xylose-rich polymer, optimally active, respectively, at pH 6.6 and 5.6, and at 65°C. The xylanases were stable between pH 5 to 10 at 50°C for 24 h. Xylanases released xylobiose, xylotriose and higher oligomers from xylans from different sources. Xylanase IA had a Mr of 38 kDa and contained 7% carbohydrate whereas xylanase IIIA had a Mr of 24 kDa and no detectable carbohydrate. The Km for larchwood xylan (mg ml−1) and Vmax (μmol xylose min−1 mg−1 protein) of xylanase IA were 0.33 and 311, and of xylanase IIIA 1.69 and 500, respectively. Xylanases IA, II and IIIA showed no synergism in the hydrolysis of larchwood glucuronoxylan or oat spelt and sugarcane bagasse arabinoxylans. They had different reactivity on untreated and delignified bagasse. The xylanases were more reactive than cellulase on delignified bagasse. Simultaneous treatment of delignified bagasse by xylanase and cellulase released more sugar than individual enzyme treatments. By contrast, the primary cell walls of a plant, particularly from the region of elongation, were more susceptible to the action of cellulase than xylanase. The effects of xylanase and cellulase on plant cell walls were consistent with the view that hemicellulose surrounds cellulose in plant cell walls.  相似文献   
48.
Reactive oxygen species (ROS) have been shown to mediate the effects of several growth factors and vasoactive peptides, such as epidermal growth factor, platelet-derived growth factor, and angiotensin II (AII). Endothelin-1 (ET-1) is a vasoactive peptide which also exhibits mitogenic activity in vascular smooth muscle cells (VSMCs), and is believed to contribute to the pathogenesis of vascular abnormalities such as atherosclerosis, hypertension, and restenosis after angioplasty. However, a possible role for ROS generation in mediating the ET-1 response on extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and protein tyrosine kinase 2 (Pyk2), key components of the growth-promoting and proliferative signaling pathways, has not been examined in detail. Our aim was to investigate the involvement of ROS in ET-1-mediated activation of ERK1/2, PKB, and Pyk2 in A-10 VSMCs. ET-1 stimulated ERK1/2, PKB, and Pyk2 phosphorylation in a dose- and time-dependent manner. Pretreatment of A-10 VSMCs with diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, attenuated ET-1-enhanced ERK1/2, PKB, and Pyk2 phosphorylation. In addition, in parallel with an inhibitory effect on the above signaling components, DPI also blocked ET-1-induced protein synthesis. ET-1 was also found to increase ROS production, which was suppressed by DPI treatment. N-Acetylcysteine, a ROS scavenger, exhibited a response similar to that of DPI and inhibited ET-1-stimulated ERK1/2, PKB, and Pyk2 phosphorylation. These results demonstrate that ROS are critical mediators of ET-1-induced signaling events linked to growth-promoting proliferative and hypertrophic pathways in VSMCs.  相似文献   
49.
50.
Analysis of the retinal defects of a CK2 phosphomimetic variant of E(spl)M8 (M8S159D) and the truncated protein M8* encoded by the E(spl)D allele, suggest that the nonphosphorylated CtD “autoinhibits” repression. We have investigated this model by testing for inhibition (in “trans”) by the CtD fragment in its nonphosphorylated (M8‐CtD) and phosphomimetic (M8SD‐CtD) states. In N+ flies, ectopic M8‐CtD compromises lateral inhibition, i.e., elicits supernumerary bristles as with loss of N signaling. This antimorphic activity of M8‐CtD strongly rescues the reduced eye and/or bristle loss phenotypes that are elicited by ectopic M8SD or wild type M8. Additionally, the severely reduced eye of Nspl/Y; E(spl)D/+ flies is also rescued by M8‐CtD. Rescue is specific to the time and place, the morphogenetic furrow, where “founding” R8 photoreceptors are specified. In contrast, the phosphomimetic M8SD‐CtD that is predicted to be deficient for autoinhibition, exhibits significantly attenuated or negligible activity. These studies provide evidence that autoinhibition by the CtD regulates M8 activity in a phosphorylation‐dependent manner. genesis 48:44–55, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号