首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1716篇
  免费   266篇
  2021年   17篇
  2018年   24篇
  2017年   18篇
  2016年   35篇
  2015年   48篇
  2014年   39篇
  2013年   65篇
  2012年   90篇
  2011年   68篇
  2010年   53篇
  2009年   48篇
  2008年   75篇
  2007年   65篇
  2006年   70篇
  2005年   69篇
  2004年   50篇
  2003年   53篇
  2002年   70篇
  2001年   49篇
  2000年   58篇
  1999年   54篇
  1998年   17篇
  1997年   21篇
  1996年   24篇
  1995年   30篇
  1994年   29篇
  1993年   19篇
  1992年   35篇
  1991年   31篇
  1990年   39篇
  1989年   32篇
  1988年   24篇
  1987年   36篇
  1986年   22篇
  1985年   35篇
  1984年   27篇
  1983年   30篇
  1982年   20篇
  1981年   21篇
  1980年   18篇
  1979年   36篇
  1978年   25篇
  1976年   21篇
  1975年   15篇
  1974年   20篇
  1973年   33篇
  1972年   22篇
  1970年   22篇
  1967年   12篇
  1966年   12篇
排序方式: 共有1982条查询结果,搜索用时 15 毫秒
971.
Nanolipoprotein particles (NLPs) are nanometer‐scale discoidal particles that feature a phospholipid bilayer confined within an apolipoprotein “scaffold,” which are useful for solubilizing hydrophobic molecules such as drugs and membrane proteins. NLPs are synthesized either by mixing the purified apolipoprotein with phospholipids and other cofactors or by cell‐free protein synthesis followed by self‐assembly of the nanoparticles in the reaction mixture. Either method can be problematic regarding the production of homogeneous and monodispersed populations of NLPs, which also currently requires multiple synthesis and purification steps. Telodendrimers (TD) are branched polymers made up of a dendritic oligo‐lysine core that is conjugated to linear polyethylene glycol (PEG) on one end, and the lysine “branches” are terminated with cholic acid moieties that enable the formation of nanomicelles in aqueous solution. We report herein that the addition of TD during cell‐free synthesis of NLPs produces unique hybrid nanoparticles that have drastically reduced polydispersity as compared to NLPs made in the absence of TD. This finding was supported by dynamic light scattering, fluorescence correlation spectroscopy, and cryo transmission electron microscopy (Cryo‐EM). These techniques demonstrate the ability of TDs to modulate both the NLP size (6–30 nm) and polydispersity. The telodendrimer NLPs (TD‐NLPs) also showed 80% less aggregation as compared to NLPs alone. Furthermore, the versatility of these novel nanoparticles was shown through direct conjugation of small molecules such as fluorescent dyes directly to the TD as well as the insertion of a functional membrane protein.  相似文献   
972.
Anti-mitotic anti-cancer drugs offer a potential platform for developing new radiotracers for imaging proliferation markers associated with the mitosis-phase of the cell-cycle. One interesting target is kinesin spindle protein (KSP)—an ATP-dependent motor protein that plays a vital role in bipolar spindle formation. In this work we synthesised a range of new fluorinated-quinazolinone compounds based on the structure of the clinical candidate KSP inhibitor, ispinesib, and investigated their properties in vitro as potential anti-mitotic agents targeting KSP expression. Anti-proliferation (MTT and BrdU) assays combined with additional studies including fluorescence-assisted cell sorting (FACS) analysis of cell-cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Additional studies using confocal fluorescence microscopy showed that these compounds induce M-phase arrest via monoaster spindle formation. Structural studies revealed that compound 20-(R) is the most potent fluorinated-quinazolinone inhibitor of KSP and represents a suitable lead candidate for further studies on designing 18F-radiolabelled agents for positron-emission tomography (PET).  相似文献   
973.
The fungus Aspergillus flavus (Link:Fr) causes ear rot of maize (Zea mays L.) and produces the toxic metabolic product aflatoxin. One particularly effective method of controlling the fungus is via host plant resistance, but while several resistant breeding lines have been identified, transferring the resistance genes from these lines into elite cultivars has been less effective than needed. A high number of genes involved with resistance, each with a small effect, and some only found under certain environmental conditions, has hampered resistance breeding. The identification of markers linked to genomic regions associated with resistance would aid in this effort. The goals of this study were to identify and characterize quantitative trait loci (QTL) conferring resistance to aflatoxin accumulation from resistant maize donor Mp313E in a background of the susceptible inbred line Va35; to compare them to the QTL identified from Mp313E in a background of B73; and to test the stability of the QTL identified in Mp313E × Va35 in multiple environments by remapping the phenotypic tails of the Mp313E × Va35 mapping population in new locations. Twenty different QTL were found in this study, 11 of which were also found in different environments using the phenotypic tail subset mapping population, and five of which were likely the same as those reported in the Mp313E × B73 mapping population. This indicates that many of the QTL are stable over the environments and genetic backgrounds tested, which will make them more valuable in breeding efforts.  相似文献   
974.
The objective of the present study was to evaluate a comprehensive set of urinary biomarkers for oxidative damage to lipids, proteins and DNA, in man. Eighteen moderately trained males (mean age 24.6±0.7) exercised 60?min at 70% of maximal O2 uptake on a cycle ergometer. Urine fractions for 12?h were collected 1 day before, and for 3 consecutive days after exercise.

As biomarkers of lipid peroxidation, 8 aldehydes (i.e. propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal and malondialdehyde—MDA)and acetone were analyzed in urines by gas chromatography with electron capture detection (GC-ECD). As a biomarker of protein oxidation, o,o′-dityrosine was analyzed in urine samples by a recently developed isotope dilution HPLC-atmospheric pressure chemical ionization (APCI)-tandem-mass spectrometry (HPLC-APCI-MS/MS) methodology. As a biomarker of oxidative DNA damage, urinary excretion of 8-hydroxy-2′-deoxyguanosine (8-OHdG) was measured by an ELISA method.

On the day of exercise, significant increases were observed in urinary excretions of acetone (?p<0.025, n=18) and butanal (?p<0.01, n=18) in the 12?h daytime fractions compared to the daytime fraction before exercise. The urinary acetone excretion was also significantly (?p<0.05) increased on the 1st day after exercise. Octanal and nonanal were increased in the daytime urine fraction on the 2nd day after exercise. However, these increases were of borderline significance (?p=0.09 and p=0.07, respectively).

Significantly elevated urinary o,o′-dityrosine amounts were observed in the daytime fraction on the day of exercise (?p<0.025) and on the 1st day after exercise (?p=0.07) compared to the before exercise daytime fraction.

Excretion of urinary 8-OHdG was statistically significantly increased in the daytime fractions on the day of exercise (?p=0.07) and on the 1st day after exercise (?p<0.025) compared to before exercise daytime fraction.

Increases in urinary excretions of acetone, propanal, pentanal, MDA and 8-OHdG significantly correlated with training status (hours of exercise/week) of the volunteers, while o,o′-dityrosine did not.

To our knowledge, the present study is the first to evaluate a multi-parameter non-invasive biomarker set for damage to three main cellular targets of ROS. It shows that 1?h of exercise may already induce oxidative damage in moderately trained individuals and that the chosen urinary biomarkers are sensitive enough to monitor such damage.  相似文献   
975.
Production of biofuel from algae is dependent on the microalgal biomass production rate and lipid content. Both biomass production and lipid accumulation are limited by several factors, of which nutrients play a key role. In this research, the marine microalgae Dunaliella tertiolecta was used as a model organism and a profile of its nutritional requirements was determined. Inorganic phosphate PO4(3-) and trace elements: cobalt (Co2+), iron (Fe3+), molybdenum (Mo2+) and manganese (Mn2+) were identified as required for algae optimum growth. Inorganic nitrogen in the form of nitrate NO3- instead of ammonium (NH4+) was required for maximal biomass production. Lipids accumulated under nitrogen starvation growth condition and this was time-dependent. Results of this research can be applied to maximize production of microalgal lipids in optimally designed photobioreactors.  相似文献   
976.
In tumours, aberrant splicing generates variants that contribute to multiple aspects of tumour establishment, progression and maintenance. We show that in glioblastoma multiforme (GBM) specimens, death-domain adaptor protein Insuloma-Glucagonoma protein 20 (IG20) is consistently aberrantly spliced to generate an antagonist, anti-apoptotic isoform (MAP-kinase activating death domain protein, MADD), which effectively redirects TNF-α/TRAIL-induced death signalling to promote survival and proliferation instead of triggering apoptosis. Splicing factor hnRNPH, which is upregulated in gliomas, controls this splicing event and similarly mediates switching to a ligand-independent, constitutively active Recepteur d'Origine Nantais (RON) tyrosine kinase receptor variant that promotes migration and invasion. The increased cell death and the reduced invasiveness caused by hnRNPH ablation can be rescued by the targeted downregulation of IG20/MADD exon 16- or RON exon 11-containing variants, respectively, using isoform-specific knockdown or splicing redirection approaches. Thus, hnRNPH activity appears to be involved in the pathogenesis and progression of malignant gliomas as the centre of a splicing oncogenic switch, which might reflect reactivation of stem cell patterns and mediates multiple key aspects of aggressive tumour behaviour, including evasion from apoptosis and invasiveness.  相似文献   
977.
Vascular risk factors play a critical role in the development of cognitive decline and AD (Alzheimer's disease), during aging, and often result in chronic cerebral hypoperfusion. The neurobiological link between hypoperfusion and cognitive decline is not yet defined, but is proposed to involve damage to the brain's white matter. In a newly developed mouse model, hypoperfusion, in isolation, produces a slowly developing and diffuse damage to myelinated axons, which is widespread in the brain, and is associated with a selective impairment in working memory. Cerebral hypoperfusion, an early event in AD, has also been shown to be associated with white matter damage and notably an accumulation of amyloid. The present review highlights some of the published data linking white matter disruption to aging and AD as a result of vascular dysfunction. A model is proposed by which chronic cerebral hypoperfusion, as a result of vascular factors, results in both the generation and accumulation of amyloid and injury to white matter integrity, resulting in cognitive impairment. The generation of amyloid and accumulation in the vasculature may act to perpetuate further vascular dysfunction and accelerate white matter pathology, and as a consequence grey matter pathology and cognitive decline.  相似文献   
978.
Much is known about G protein coupled receptor trafficking and internalization following agonist stimulation. However, much less is known about outward trafficking of receptors from synthesis in the endoplasmic reticulum to the plasma membrane, or the role that trafficking might play in the assembly of receptor signaling complexes, important for targeting, specificity, and rapidity of subsequent signaling events. Up to now, very little is understood about receptor hetero-oligomers other than the fact that their assembly is done rapidly after biosynthesis. In our study we use bimolecular fluorescence complementation to selectively follow receptor dimers when expressed in Jurkat cells in order to clarify the trafficking itinerary those receptors follow to reach the plasma membrane and the resulting effect on signal transduction. CXCR4 and CCR5, previously shown to form both homo and hetero-oligomers, were used as our model to understand the specificities of trafficking along the anterograde pathway. The CXCR4 homodimer relies on Rabs2, 6 and 8 for anterograde transport regardless of the presence of endogenous CD4. The CCR5 homodimer relies on Rabs1 and 11 when CD4 is absent, but Rabs1 and 8 when CD4 was present. Interestingly, similar to the CCR5 homodimer, the CXCR4-CCR5 heterodimer relied on Rabs1 and 11 but also required Rab2 when CD4 was absent, and only Rab 1 when CD4 was present. Our results demonstrate that, although the receptors composing the heterodimeric complex are the same as in the homodimeric ones, the heterodimer traffics and signals differently than each homodimer. Our study demonstrates the importance of considering the receptor heterodimers as distinct signaling entities that should be carefully and individually characterized.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号