首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2818篇
  免费   251篇
  3069篇
  2023年   15篇
  2022年   59篇
  2021年   98篇
  2020年   52篇
  2019年   70篇
  2018年   83篇
  2017年   52篇
  2016年   110篇
  2015年   160篇
  2014年   182篇
  2013年   201篇
  2012年   269篇
  2011年   243篇
  2010年   135篇
  2009年   115篇
  2008年   136篇
  2007年   138篇
  2006年   97篇
  2005年   115篇
  2004年   107篇
  2003年   72篇
  2002年   60篇
  2001年   25篇
  2000年   22篇
  1999年   17篇
  1998年   17篇
  1997年   11篇
  1995年   9篇
  1993年   13篇
  1992年   17篇
  1991年   11篇
  1990年   17篇
  1989年   17篇
  1988年   15篇
  1987年   16篇
  1986年   18篇
  1984年   14篇
  1983年   10篇
  1982年   9篇
  1981年   15篇
  1980年   11篇
  1979年   14篇
  1978年   18篇
  1977年   12篇
  1976年   8篇
  1975年   9篇
  1974年   8篇
  1970年   10篇
  1969年   13篇
  1967年   13篇
排序方式: 共有3069条查询结果,搜索用时 10 毫秒
991.
Transmembrane mucins, MUC4 and MUC16 are associated with tumor progression and metastatic potential in human pancreatic adenocarcinoma. We discovered that miR-200c interacts with specific sequences within the coding sequence of MUC4 and MUC16 mRNAs, and evaluated the regulatory nature of this association. Pancreatic cancer cell lines S2.028 and T3M-4 transfected with miR-200c showed a 4.18 and 8.50 fold down regulation of MUC4 mRNA, and 4.68 and 4.82 fold down regulation of MUC16 mRNA compared to mock-transfected cells, respectively. A significant reduction of glycoprotein expression was also observed. These results indicate that miR-200c overexpression regulates MUC4 and MUC16 mucins in pancreatic cancer cells by directly targeting the mRNA coding sequence of each, resulting in reduced levels of MUC4 and MUC16 mRNA and protein. These data suggest that, in addition to regulating proteins that modulate EMT, miR-200c influences expression of cell surface mucins in pancreatic cancer.  相似文献   
992.

Background

Zinc deficiency due to poor nutrition or genetic mutations in zinc transporters is a global health problem and approaches to providing effective dietary zinc supplementation while avoiding potential toxic side effects are needed.

Methods/Principal Findings

Conditional knockout of the intestinal zinc transporter Zip4 (Slc39a4) in mice creates a model of the lethal human genetic disease acrodermatitis enteropathica (AE). This knockout leads to acute zinc deficiency resulting in rapid weight loss, disrupted intestine integrity and eventually lethality, and therefore provides a model system in which to examine novel approaches to zinc supplementation. We examined the efficacy of dietary clioquinol (CQ), a well characterized zinc chelator/ionophore, in rescuing the Zip4 intest KO phenotype. By 8 days after initiation of the knockout neither dietary CQ nor zinc supplementation in the drinking water was found to be effective at improving this phenotype. In contrast, dietary CQ in conjunction with zinc supplementation was highly effective. Dietary CQ with zinc supplementation rapidly restored intestine stem cell division and differentiation of secretory and the absorptive cells. These changes were accompanied by rapid growth and dramatically increased longevity in the majority of mice, as well as the apparent restoration of the homeostasis of several essential metals in the liver.

Conclusions

These studies suggest that oral CQ (or other 8-hydroxyquinolines) coupled with zinc supplementation could provide a facile approach toward treating zinc deficiency in humans by stimulating stem cell proliferation and differentiation of intestinal epithelial cells.  相似文献   
993.
Herein we describe a pathogenic role for the Pseudomonas aeruginosa type three secretion system (T3SS) needle tip complex protein, PcrV, in causing lung endothelial injury. We first established a model in which P. aeruginosa wild type strain PA103 caused pneumonia-induced sepsis and distal organ dysfunction. Interestingly, a PA103 derivative strain lacking its two known secreted effectors, ExoU and ExoT [denoted PA103 (ΔU/ΔT)], also caused sepsis and modest distal organ injury whereas an isogenic PA103 strain lacking the T3SS needle tip complex assembly protein [denoted PA103 (ΔPcrV)] did not. PA103 (ΔU/ΔT) infection caused neutrophil influx into the lung parenchyma, lung endothelial injury, and distal organ injury (reminiscent of sepsis). In contrast, PA103 (ΔPcrV) infection caused nominal neutrophil infiltration and lung endothelial injury, but no distal organ injury. We further examined pathogenic mechanisms of the T3SS needle tip complex using cultured rat pulmonary microvascular endothelial cells (PMVECs) and revealed a two-phase, temporal nature of infection. At 5-hours post-inoculation (early phase infection), PA103 (ΔU/ΔT) elicited PMVEC barrier disruption via perturbation of the actin cytoskeleton and did so in a cell death-independent manner. Conversely, PA103 (ΔPcrV) infection did not elicit early phase PMVEC barrier disruption. At 24-hours post-inoculation (late phase infection), PA103 (ΔU/ΔT) induced PMVEC damage and death that displayed an apoptotic component. Although PA103 (ΔPcrV) infection induced late phase PMVEC damage and death, it did so to an attenuated extent. The PA103 (ΔU/ΔT) and PA103 (ΔPcrV) mutants grew at similar rates and were able to adhere equally to PMVECs post-inoculation indicating that the observed differences in damage and barrier disruption are likely attributable to T3SS needle tip complex-mediated pathogenic differences post host cell attachment. Together, these infection data suggest that the T3SS needle tip complex and/or another undefined secreted effector(s) are important determinants of P. aeruginosa pneumonia-induced lung endothelial barrier disruption.  相似文献   
994.

Background

Obesity is now more common in lower socioeconomic groups in developed nations, but the socio-economic patterning of obesity has changed over time. This study examines the time trends in the socioeconomic patterning of generalised and abdominal obesity and overweight in English adults.

Methods

Data were from core annual samples of the Health Survey for England 1993–2008, including 155 661 participants aged 18–75 years. The prevalence of generalised and abdominal obesity and overweight was reported as crude and age-adjusted estimates. Binomial regression was used to model measures of obesity and overweight with age, sex, survey years, and two indicators of socioeconomic position: Registrar General’s Social Class (manual and non-manual occupational groups) and relative length of full time education. Trends in socioeconomic patterning were assessed by formal tests for interactions between socioeconomic position measures and survey periods in these models.

Results

The prevalence of generalised and abdominal overweight and obesity increased consistently between 1993 and 2008. There were significant differences in the four outcomes between the two socioeconomic position (SEP) groups in men and women, except for generalised and abdominal overweight with social class in men. The prevalence of obesity and overweight across the whole period was higher in subgroups with lower SEP (differences of 0.2% to 9.5%). There was no significant widening of the socioeconomic gradient of most indicators of greater body fat since the early 1990s, except for educational gradient in generalised obesity in men and women (P = 0.001).

Conclusions

Substantial social class and education gradients in obesity and overweight are still present in both sexes. However, there is limited evidence that these socioeconomic inequalities have changed since 1993.  相似文献   
995.
1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) regulates osteoblasts through genomic and rapid membrane-mediated responses. Here we examined the interaction of protein disulfide isomerase family A, member 3 (Pdia3) and the traditional vitamin D receptor (VDR) in plasma membrane-associated responses to 1α,25(OH)2D3. We found that Pdia3 co-localized with VDR and the caveolae scaffolding protein, caveolin-1 on the surface of MC3T3-E1 osteoblasts. Immunoprecipitation showed that both Pdia3 and VDR interacted with caveolin-1. Pdia3 further interacted with phospholipase A2 activating protein (PLAA), whereas VDR interacted with c-Src. 1α,25(OH)2D3 changed the interactions and transport of the two receptors and rapidly activated phospholipase A2 (PLA2) and c-Src. Silencing either receptor or caveolin-1 inhibited both PLA2 and c-Src, indicating that the two receptors function interdependently. These two receptor dependent rapid responses to 1α,25(OH)2D3 regulated gene expression, proliferation and apoptosis of MC3T3-E1 cells. These data demonstrate the importance of both receptors and caveolin-1 in mediating membrane responses to 1α,25(OH)2D3 and subsequently regulating osteoblast biology.  相似文献   
996.
In a wide range of contexts, including predator avoidance, medical decision-making and security screening, decision accuracy is fundamentally constrained by the trade-off between true and false positives. Increased true positives are possible only at the cost of increased false positives; conversely, decreased false positives are associated with decreased true positives. We use an integrated theoretical and experimental approach to show that a group of decision-makers can overcome this basic limitation. Using a mathematical model, we show that a simple quorum decision rule enables individuals in groups to simultaneously increase true positives and decrease false positives. The results from a predator-detection experiment that we performed with humans are in line with these predictions: (i) after observing the choices of the other group members, individuals both increase true positives and decrease false positives, (ii) this effect gets stronger as group size increases, (iii) individuals use a quorum threshold set between the average true- and false-positive rates of the other group members, and (iv) individuals adjust their quorum adaptively to the performance of the group. Our results have broad implications for our understanding of the ecology and evolution of group-living animals and lend themselves for applications in the human domain such as the design of improved screening methods in medical, forensic, security and business applications.  相似文献   
997.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins are enriched in cholesterol- and sphingolipid-rich lipid rafts within the membrane. Rafts are known to have roles in cellular organization and function, but little is understood about the factors controlling the distribution of proteins in rafts. We have used atomic force microscopy to directly visualize proteins in supported lipid bilayers composed of equimolar sphingomyelin, dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The transmembrane anchored angiotensin converting enzyme (TM-ACE) was excluded from the liquid ordered raft domains. Replacement of the transmembrane and cytoplasmic domains of TM-ACE with a GPI anchor (GPI-ACE) promoted the association of the protein with rafts in the bilayers formed with brain sphingomyelin (mainly C18:0). Association with the rafts did not occur if the shorter chain egg sphingomyelin (mainly C16:0) was used. The distribution of GPI-anchored proteins in supported lipid bilayers was investigated further using membrane dipeptidase (MDP) whose GPI anchor contains distearoyl phosphatidylinositol. MDP was also excluded from rafts when egg sphingomyelin was used but associated with raft domains formed using brain sphingomyelin. The effect of sphingomyelin chain length on the distribution of GPI-anchored proteins in rafts was verified using synthetic palmitoyl or stearoyl sphingomyelin. Both GPI-ACE and MDP only associated with the longer chain stearoyl sphingomyelin rafts. These data obtained using supported lipid bilayers provide the first direct evidence that the nature of the membrane-anchoring domain influences the association of a protein with lipid rafts and that acyl chain length hydrophobic mismatch influences the distribution of GPI-anchored proteins in rafts.  相似文献   
998.
For most antivenoms there is little information from clinical studies to infer the relationship between dose and efficacy or dose and toxicity. Antivenom dose-finding studies usually recruit too few patients (e.g. fewer than 20) relative to clinically significant event rates (e.g. 5%). Model based adaptive dose-finding studies make efficient use of accrued patient data by using information across dosing levels, and converge rapidly to the contextually defined ‘optimal dose’. Adequate sample sizes for adaptive dose-finding trials can be determined by simulation. We propose a model based, Bayesian phase 2 type, adaptive clinical trial design for the characterisation of optimal initial antivenom doses in contexts where both efficacy and toxicity are measured as binary endpoints. This design is illustrated in the context of dose-finding for Daboia siamensis (Eastern Russell’s viper) envenoming in Myanmar. The design formalises the optimal initial dose of antivenom as the dose closest to that giving a pre-specified desired efficacy, but resulting in less than a pre-specified maximum toxicity. For Daboia siamensis envenoming, efficacy is defined as the restoration of blood coagulability within six hours, and toxicity is defined as anaphylaxis. Comprehensive simulation studies compared the expected behaviour of the model based design to a simpler rule based design (a modified ‘3+3’ design). The model based design can identify an optimal dose after fewer patients relative to the rule based design. Open source code for the simulations is made available in order to determine adequate sample sizes for future adaptive snakebite trials. Antivenom dose-finding trials would benefit from using standard model based adaptive designs. Dose-finding trials where rare events (e.g. 5% occurrence) are of clinical importance necessitate larger sample sizes than current practice. We will apply the model based design to determine a safe and efficacious dose for a novel lyophilised antivenom to treat Daboia siamensis envenoming in Myanmar.  相似文献   
999.
1000.
We tested the hypothesis that reductions in vascular endothelial function (endothelium-dependent dilation, EDD) with age are related to increases in sympathetic activity. Among 314 healthy men and women, age was inversely related to brachial artery flow-mediated dilation (FMD) (r = -0.30, P < 0.001), a measure of EDD, and positively related to plasma norepinephrine concentrations (PNE), a marker of sympathetic activity (r = 0.49, P < 0.001). Brachial FMD was inversely related to PNE in all subjects (r = -0.25, P < 0.001) and in men (n = 187, r = -0.17, P = 0.02) and women (n = 127, r = -0.37, P < 0.001) separately. After controlling for PNE (multiple regression analysis), brachial FMD remained significantly related to age in all subjects (r = -0.20, P < 0.001) and in men (r = -0.23, P < 0.01), but not women (r = -0.16, P = 0.06). Consistent with this, brachial FMD remained significantly related to PNE when controlling for age (r = -0.24, P < 0.01) and menopause status (r = -0.24, P < 0.01) in women. Indeed, PNE was the strongest independent correlate of brachial FMD in women after controlling for conventional cardiovascular disease risk factors (r = -0.22, P = 0.01). This relation persisted in a subset of women (n = 113) after further accounting for the effects of plasma oxidized low-density lipoprotein (P < 0.05), a circulating marker of oxidative stress. Endothelium-independent dilation was not related to age in either men or women (P > 0.05). These results provide the first evidence that EDD is inversely related to sympathetic activity, as assessed by PNE, among healthy adults varying in age. In particular, our findings suggest that sympathetic nervous system activity may be a key factor involved in the modulation of vascular endothelial function with aging in women.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号