首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10956篇
  免费   1048篇
  国内免费   3篇
  2023年   39篇
  2022年   108篇
  2021年   241篇
  2020年   131篇
  2019年   174篇
  2018年   209篇
  2017年   193篇
  2016年   308篇
  2015年   488篇
  2014年   548篇
  2013年   687篇
  2012年   856篇
  2011年   881篇
  2010年   490篇
  2009年   459篇
  2008年   657篇
  2007年   587篇
  2006年   528篇
  2005年   559篇
  2004年   529篇
  2003年   457篇
  2002年   426篇
  2001年   138篇
  2000年   123篇
  1999年   157篇
  1998年   130篇
  1997年   99篇
  1996年   74篇
  1995年   55篇
  1994年   61篇
  1993年   68篇
  1992年   104篇
  1991年   69篇
  1990年   85篇
  1989年   94篇
  1988年   68篇
  1987年   75篇
  1986年   58篇
  1985年   68篇
  1984年   45篇
  1983年   45篇
  1982年   48篇
  1981年   68篇
  1980年   60篇
  1979年   49篇
  1978年   51篇
  1977年   46篇
  1976年   43篇
  1975年   29篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
931.
The ability of Streptococcus agalactiae and Streptococcus iniae to attract macrophages of Nile tilapia (Oreochromis niloticus) was investigated. The extracellular products (ECP) from S. agalactiae and S. iniae were tested in vitro for macrophage chemotaxis using blind-well chambers. The macrophages were obtained from the peritoneal cavity 4-5 days after intraperitoneal injection of squalene. Both macrophage chemotactic and chemokinetic activities were demonstrated using the S. agalactiae ECP. However, only chemotactic activity was shown for S. iniae ECP. High-pressure liquid chromatography fractionation revealed that semi-purified S. agalactiae and S. iniae ECPs had estimated molecular weights of 7.54 and 19.2kDa, respectively. The prominent chemotactic activities of ECP from S. agalactiae and S. iniae are likely to be involved in the proinflammatory responses of macrophages to S. agalactiae and S. iniae infections.  相似文献   
932.
A preliminary analysis of 175 specimens of the white-streaked grouper, Epinephelus ongus (Serranidae), was undertaken to determine life history characteristics of the species. Sagittal otoliths, stomachs, and a subsample of gonads were removed to determine age at length, diet, and reproductive strategy. The von Bertalanffy growth equation was used to describe growth in this species and yielded the growth parameters L = 438.3, K = 0.04334, and t0 = −8.752. Fish ranged in age from 1 to 20 years. Diet was consistent with other serranid species and included crabs, shrimps, octopi, and fishes. Based on a very limited number of specimens (n = 12), the larger size and older age of males compared to females suggests that E. ongus may be a protogynous hermaphrodite.  相似文献   
933.
Mesenchymal stem cells have been intensively studied for their potential use in reparative strategies for neurodegenerative diseases and traumatic injuries. We used mesenchymal stem cells (rMSC) from rat bone marrow to evaluate the therapeutic potential after spinal cord injury (SCI). Immunohistochemistry confirmed a large number of apoptotic neurons and oligodendrocytes in caudal segments 2 mm away from the lesion site. Expression of caspase-3 on both neurons and oligodendrocytes after SCI was significantly downregulated by rMSC. Caspase-3 downregulation by rMSC involves increased expression of FLIP and XIAP in the cytosol and inhibition of PARP cleavage in the nucleus. Animals treated with rMSC had higher Basso, Beattie, Bresnahan (BBB) locomotor scoring and better recovery of hind limb sensitivity. Treatment with rMSC had a positive effect on behavioral outcome and histopathological assessment after SCI. The ability of rMSC to incorporate into the spinal cord, differentiate and to improve locomotor recovery hold promise for a potential cure after SCI. Special issue in honor of Naren Banik.  相似文献   
934.
Patients with advanced prostate cancer often exhibit increased activation of the coagulation system. The key activator of the coagulation cascade is the serine protease thrombin which is capable of eliciting numerous cellular responses. We previously reported that the thrombin receptor PAR1 is overexpressed in prostate cancer. To investigate further the role of PAR1 in prostate cancer metastasis, we examined the effects of thrombin activation on cell adhesion and motility in PC-3 prostate cancer cells. Activation of PAR1-induced dynamic cytoskeletal reorganization and reduced PC-3 binding to collagen I, collagen IV, and laminin (P < 0.01) but not fibronectin. Expression of the cell surface integrin receptors did not change as assessed by flow cytometry. Immunofluorescence microscopy revealed that PAR1 stimulation caused reorganization of the focal adhesions, suggesting that PAR1 activation in PC-3 cells may be modulating cell adhesion through integrin function but not expression. Furthermore, RhoA was activated upon stimulation with thrombin with subsequent cell contraction, decreased cell adhesion, and induced migration towards monocyte chemoattractant protein 1 (MCP-1; CCL2). Thus, it appears that thrombin stimulation plays a role in prostate cancer metastasis by decreasing cell adhesion to the extracellular matrix and positioning the cell in a "ready state" for migration in response to a chemotactic signal. Further exploration is needed to determine whether PAR1 activation affects other signaling pathways involved in prostate cancer.  相似文献   
935.
Many key cellular functions, such as cell motility and cellular differentiation are mediated by Rho-associated protein kinases (ROCKs). Numerous studies have been conducted to examine the ROCK signal transduction pathways involved in these motile and contractile events with the aid of pharmacological inhibitors such as Y-27632. However the molecular mechanism of action of Y-27632 has not been fully defined. To assess the relative contribution of these Rho effectors to the effects of Y-27632, we compared the cytoskeletal phenotype, wound healing and neurite outgrowth in cells treated with Y-27632 or subjected to knockdown with ROCK-I, ROCK-II or PRK-2- specific siRNAs. Reduction of ROCK-I enhances the formation of thin actin-rich membrane extensions, a phenotype that closely resembles the effect of Y-27632. Knockdown of ROCK II or PRK-2, leads to the formation of disc-like extensions and thick actin bundles, respectively. The effect of ROCK-I knockdown also mimicked the effect of Y-27632 on wound closer rates. ROCK-I knockdown and Y-27632 enhanced wound closure rates, while ROCK-II and PRK-2 were not appreciably different from control cells. In neurite outgrowth assays, knockdown of ROCK-I, ROCK-II or PRK-2 enhances neurite lengths, however no individual knockdown stimulated neurite outgrowth as robustly as Y-27632. We conclude that several kinases contribute to the global effect of Y-27632 on cellular responses.  相似文献   
936.
937.
938.
Contemporary evolution has been shown in a few studies to be an important component of colonization ability, but seldom have researchers considered whether phenotypic plasticity facilitates directional evolution from the invasion event. In the current study, we evaluated body shape divergence of the New Mexico State-threatened White Sands pupfish (Cyprinodon tularosa) that were introduced to brackish, lacustrine habitats at two different time in the recent past (approximately 30 years and 1 year previously) from the same source population (saline river environment). Pupfish body shape is correlated with environmental salinity: fish from saline habitats are characterized by slender body shapes, whereas fish from fresher, yet brackish springs are deep-bodied. In this study, lacustrine populations consisted of an approximately 30-year old population and several 1-year old populations, all introduced from the same source. The body shape divergence of the 30-year old population was significant and greater than any of the divergences of the 1-year old populations (which were for the most part not significant). Nonetheless, all body shape changes exhibited body deepening in less saline environments. We conclude that phenotypic plasticity potentially facilitates directional evolution of body deepening for introduced pupfish populations.  相似文献   
939.
940.
The hedgehog signaling network regulates pattern formation, proliferation, cell fate and stem/progenitor cell self-renewal in many organs. Altered hedgehog signaling is implicated in 20-25% of all cancers, including breast cancer. We demonstrated previously that heterozygous disruption of the gene encoding the patched-1 (PTCH1) hedgehog receptor, a negative regulator of smoothened (Smo) in the absence of ligand, led to mammary ductal dysplasia in virgin mice. We now show that expression of activated human SMO (SmoM2) under the mouse mammary tumor virus (MMTV) promoter in transgenic mice leads to increased proliferation, altered differentiation, and ductal dysplasias distinct from those caused by Ptch1 heterozygosity. SMO activation also increased the mammosphere-forming efficiency of primary mammary epithelial cells. However, limiting-dilution transplantation showed a decrease in the frequency of regenerative stem cells in MMTV-SmoM2 epithelium relative to wild type, suggesting enhanced mammosphere-forming efficiency was due to increased survival or activity of division-competent cell types under anchorage-independent growth conditions, rather than an increase in the proportion of regenerative stem cells per se. In human clinical samples, altered hedgehog signaling occurs early in breast cancer development, with PTCH1 expression reduced in approximately 50% of ductal carcinoma in situ (DCIS) and invasive breast cancers (IBC). Conversely, SMO is ectopically expressed in 70% of DCIS and 30% of IBC. Surprisingly, in both human tumors and MMTV-SmoM2 mice, SMO rarely colocalized with the Ki67 proliferation marker. Our data suggest that altered hedgehog signaling may contribute to breast cancer development by stimulating proliferation, and by increasing the pool of division-competent cells capable of anchorage-independent growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号