首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2688篇
  免费   231篇
  2023年   14篇
  2022年   48篇
  2021年   94篇
  2020年   51篇
  2019年   70篇
  2018年   83篇
  2017年   51篇
  2016年   110篇
  2015年   159篇
  2014年   179篇
  2013年   199篇
  2012年   269篇
  2011年   242篇
  2010年   134篇
  2009年   115篇
  2008年   136篇
  2007年   136篇
  2006年   97篇
  2005年   113篇
  2004年   106篇
  2003年   70篇
  2002年   59篇
  2001年   21篇
  2000年   20篇
  1999年   16篇
  1998年   15篇
  1997年   10篇
  1995年   7篇
  1994年   7篇
  1993年   12篇
  1992年   14篇
  1991年   7篇
  1990年   10篇
  1989年   13篇
  1988年   7篇
  1987年   9篇
  1986年   14篇
  1984年   10篇
  1983年   7篇
  1982年   8篇
  1981年   13篇
  1980年   11篇
  1979年   10篇
  1978年   15篇
  1977年   12篇
  1976年   7篇
  1969年   7篇
  1967年   10篇
  1944年   6篇
  1943年   6篇
排序方式: 共有2919条查询结果,搜索用时 15 毫秒
131.
132.
pH control is critical in bioreactor operations, typically realized through a two-sided control loop, where CO2 sparging and base addition are used in bicarbonate-buffered media. Though a common approach, base addition could compromise culture performance due to the potential impact from pH excursions and osmolality increase in large-scale bioreactors. In this study, the feasibility of utilizing control of sparge gas composition as part of the pH control loop was assessed in Chinese hamster ovary (CHO) fed-batch cultures. Fine pH control was evaluated in multiple processes at different setpoints in small-scale ambr®250 bioreactors. Desired culture pH setpoints were successfully maintained via air sparge feedback control. As part of the pH control loop, air sparging was increased to improve CO2 removal automatically, hence increase culture pH, and vice versa. The effectiveness of this pH control strategy was seamlessly transferred from ambr®250 to 200 L scale, demonstrating scalability of the proposed methodology. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2743, 2019  相似文献   
133.
Receptor for Activated C Kinase, RACK1, is an adaptor protein that regulates signaling via Src and PKC-dependent pathways, and has been implicated in cell migration. In this study we demonstrate novel functions for RACK1 in regulating adhesion dynamics during cell migration. We report that cells lacking RACK1 are less motile and show reduced dynamics of paxillin and talin at focal complexes. To investigate the role of the RACK1/Src interactions in adhesion dynamics, we used RACK1 in which the putative Src binding site has been mutated (RACK Y246F). RACK1-deficient cells showed enhanced c-Src activity that was rescued by expression of wild type RACK1, but not by RACK Y246F. Expression of wild type RACK1, but not RACK Y246F, was also able to rescue the adhesion and migration defects observed in the RACK1-deficient cells. Furthermore, our findings indicate that RACK1 functions to regulate paxillin phosphorylation and that its effects on paxillin dynamics require the Src-mediated phosphorylation of tyrosine 31/118 on paxillin. Taken together, these findings support a novel role for RACK1 as a key regulator of cell migration and adhesion dynamics through the regulation of Src activity, and the modulation of paxillin phosphorylation at early adhesions.  相似文献   
134.
Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.  相似文献   
135.
Singh H  Cousin MA  Ashley RH 《The FEBS journal》2007,274(24):6306-6316
Chloride intracellular channels (CLICs) are soluble, signal peptide-less proteins that are distantly related to Omega-type glutathione-S-transferases. Although some CLICs bypass the classical secretory pathway and autoinsert into cell membranes to form ion channels, their cellular roles remain unclear. Many CLICs are strongly associated with cytoskeletal proteins, but the role of these associations is not known. In this study, we incorporated purified, recombinant mammalian CLIC1, CLIC4 and (for the first time) CLIC5 into planar lipid bilayers, and tested the hypothesis that the channels are regulated by actin. CLIC5 formed multiconductance channels that were almost equally permeable to Na(+), K(+) and Cl(-), suggesting that the 'CLIC' nomenclature may need to be revised. CLIC1 and CLIC5, but not CLIC4, were strongly and reversibly inhibited (or inactivated) by 'cytosolic' F-actin in the absence of any other protein. This inhibition effect on channels could be reversed by using cytochalasin to disrupt the F-actin. We suggest that actin-regulated membrane CLICs could modify solute transport at key stages during cellular events such as apoptosis, cell and organelle division and fusion, cell-volume regulation, and cell movement.  相似文献   
136.
Various proteins have been found to play roles in both the repair of UV damaged DNA and heterochromatin-mediated silencing in the yeast Saccharomyces cerevisiae. In particular, factors that are involved in the methylation of lysine-79 of histone H3 by Dot1p have been implicated in both processes, suggesting a bipartite function for this modification. We find that a dot1 null mutation and a histone H3 point mutation at lysine-79 cause increased sensitivity to UV radiation, suggesting that lysine-79 methylation is important for efficient repair of UV damage. Epistasis analysis between dot1 and various UV repair genes indicates that lysine-79 methylation plays overlapping roles within the nucleotide excision, post-replication and recombination repair pathways, as well as RAD9-mediated checkpoint function. In contrast, epistasis analysis with the H3 lysine-79 point mutation indicates that the lysine-to-glutamic acid substitution exerts specific effects within the nucleotide excision repair and post-replication repair pathways, suggesting that this allele only disrupts a subset of the functions of lysine-79 methylation. The overall results indicate the existence of distinct and separable roles of histone H3 lysine-79 methylation in the response to UV damage, potentially serving to coordinate the various repair processes.  相似文献   
137.
Cryptococcus neoformans is a fungal pathogen that is responsible for life-threatening disease, particularly in the context of compromised immunity. This organism makes extensive use of mannose in constructing its cell wall, glycoproteins, and glycolipids. Mannose also comprises up to two-thirds of the main cryptococcal virulence factor, a polysaccharide capsule that surrounds the cell. The glycosyltransfer reactions that generate cellular carbohydrate structures usually require activated donors such as nucleotide sugars. GDP-mannose, the mannose donor, is produced in the cytosol by the sequential actions of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase. However, most mannose-containing glycoconjugates are synthesized within intracellular organelles. This topological separation necessitates a specific transport mechanism to move this key precursor across biological membranes to the appropriate site for biosynthetic reactions. We have discovered two GDP-mannose transporters in C. neoformans, in contrast to the single such protein reported previously for other fungi. Biochemical studies of each protein expressed in Saccharomyces cerevisiae show that both are functional, with similar kinetics and substrate specificities. Microarray experiments indicate that the two proteins Gmt1 and Gmt2 are transcribed with distinct patterns of expression in response to variations in growth conditions. Additionally, deletion of the GMT1 gene yields cells with small capsules and a defect in capsule induction, while deletion of GMT2 does not alter the capsule. We suggest that C. neoformans produces two GDP-mannose transporters to satisfy its enormous need for mannose utilization in glycan synthesis. Furthermore, we propose that the two proteins have distinct biological roles. This is supported by the different expression patterns of GMT1 and GMT2 in response to environmental stimuli and the dissimilar phenotypes that result when each gene is deleted.  相似文献   
138.
139.
BACKGROUND: The quantitative loss of mitochondrial DNA (mtDNA) known as mtDNA depletion, often gives rise to liver disease. The diagnosis of mtDNA depletion syndrome is frequently imprecise, both for technical reasons and because of the lack of established age-adjusted normal ranges. We aimed to refine quantitative methods for diagnosing the hepatic type of mtDNA depletion syndrome, firstly by establishing an age-matched reference range for mitochondrial to nuclear DNA ratio (henceforth "mtDNA content") and secondly by investigating mtDNA in fibroblasts. METHODS: By comparing realtime PCR with an established method for quantifying mtDNA content we established a reference range for young children using biopsy and post-mortem material from patients <15 years. In addition, we investigated the arrangement of mtDNA in nucleoids from fibroblasts using fluorescence microscopy. RESULTS: Both methods showed that the mtDNA content of liver increases rapidly over the perinatal period. In a patient whose liver mtDNA content fell, but remained within the reference range, early investigation and age-matched controls were essential, as we found a progressive increase in muscle mtDNA copy number, respiratory chain activity and muscle power with age. In three further patients, fluorescence microscopy of the fibroblasts proved diagnostic. In one case a movement disorder was an important pointer. CONCLUSIONS: These cases highlight the (i) need for comparing mtDNA copy number data generated from patients to DNA isolated from an age-matched normal range from the tissue of interest and (ii) the utility of mtDNA staining with PicoGreen as a method to detect aberrant nucleoid morphology in mtDNA depletion patient fibroblast lines when affected tissues are not available for measuring mtDNA copy number.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号