首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   5篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   9篇
  2010年   2篇
  2009年   3篇
  2008年   9篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   8篇
  2002年   1篇
  1996年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
31.
32.
33.

Key message

E10 is a new maturity locus in soybean and FT4 is the predicted/potential functional gene underlying the locus.

Abstract

Flowering and maturity time traits play crucial roles in economic soybean production. Early maturity is critical for north and west expansion of soybean in Canada. To date, 11 genes/loci have been identified which control time to flowering and maturity; however, the molecular bases of almost half of them are not yet clear. We have identified a new maturity locus called “E10” located at the end of chromosome Gm08. The gene symbol E10e10 has been approved by the Soybean Genetics Committee. The e10e10 genotype results in 5–10 days earlier maturity than E10E10. A set of presumed E10E10 and e10e10 genotypes was used to identify contrasting SSR and SNP haplotypes. These haplotypes, and their association with maturity, were maintained through five backcross generations. A functional genomics approach using a predicted protein–protein interaction (PPI) approach (Protein–protein Interaction Prediction Engine, PIPE) was used to investigate approximately 75 genes located in the genomic region that SSR and SNP analyses identified as the location of the E10 locus. The PPI analysis identified FT4 as the most likely candidate gene underlying the E10 locus. Sequence analysis of the two FT4 alleles identified three SNPs, in the 5′UTR, 3′UTR and fourth exon in the coding region, which result in differential mRNA structures. Allele-specific markers were developed for this locus and are available for soybean breeders to efficiently develop earlier maturing cultivars using molecular marker assisted breeding.
  相似文献   
34.
Expression of catalase and glutathione peroxidase in renal insufficiency   总被引:2,自引:0,他引:2  
Chronic renal failure (CRF) is associated with oxidative stress, the precise mechanism of which is yet to be elucidated. The present study was undertaken to investigate in renal insufficiency the expression of catalase and glutathione peroxidase, which play a critical role in antioxidant defense system by catalyzing detoxification of hydrogen peroxide (H2O2) and organic hydroperoxides. Rats were randomly assigned to the CRF (5/6 nephrectomized) and sham-operated control groups and observed for 6 weeks. Renal and thoracic aortic catalase and glutathione peroxidase protein abundance was measured by Western blotting. The enzyme activities in the renal and aortic extracts, hepatic glutathione levels, blood pressure and urinary nitric oxide metabolites (NO(x)) excretion were also measured. Blood pressure and urinary nitric oxide metabolite (NO(x)) excretion were also measured. The CRF group showed a significant down-regulation of both immunodetectable catalase and glutathione peroxidase proteins in the remnant kidney. Catalase activity was also significantly decreased in the remnant kidney whereas glutathione peroxidase activity was not significantly affected. Furthermore, the protein abundance of catalase was unchanged whereas the enzyme activity was significantly decreased in the thoracic aorta of CRF animals compared to the sham-operated controls. By contrast, both the protein abundance and the enzyme activity of glutathione peroxidase were not significantly affected in the aorta of CRF animals compared to the sham-operated controls. This was coupled with marked arterial hypertension, significant reduction of hepatic glutathione levels and urinary NO(x) excretion pointing to increased inactivation and sequestration of NO by superoxide. These events point to the role of impaired antioxidant defense system in the pathogenesis of oxidative stress in CRF.  相似文献   
35.
36.
37.

Background

Trends in food availability and metabolic risk factors in Brazil suggest a shift toward unhealthy dietary patterns and increased cardiometabolic disease risk, yet little is known about the impact of dietary and metabolic risk factors on cardiometabolic mortality in Brazil.

Methods

Based on data from Global Burden of Disease (GBD) Study, we used comparative risk assessment to estimate the burden of 11 dietary and 4 metabolic risk factors on mortality due to cardiovascular diseases and diabetes in Brazil in 2010. Information on national diets and metabolic risks were obtained from the Brazilian Household Budget Survey, the Food and Agriculture Organization database, and large observational studies including Brazilian adults. Relative risks for each risk factor were obtained from meta-analyses of randomized trials or prospective cohort studies; and disease-specific mortality from the GBD 2010 database. We quantified uncertainty using probabilistic simulation analyses, incorporating uncertainty in dietary and metabolic data and relative risks by age and sex. Robustness of findings was evaluated by sensitivity to varying feasible optimal levels of each risk factor.

Results

In 2010, high systolic blood pressure (SBP) and suboptimal diet were the largest contributors to cardiometabolic deaths in Brazil, responsible for 214,263 deaths (95% uncertainty interval [UI]: 195,073 to 233,936) and 202,949 deaths (95% UI: 194,322 to 211,747), respectively. Among individual dietary factors, low intakes of fruits and whole grains and high intakes of sodium were the largest contributors to cardiometabolic deaths. For premature cardiometabolic deaths (before age 70 years, representing 40% of cardiometabolic deaths), the leading risk factors were suboptimal diet (104,169 deaths; 95% UI: 99,964 to 108,002), high SBP (98,923 deaths; 95%UI: 92,912 to 104,609) and high body-mass index (BMI) (42,643 deaths; 95%UI: 40,161 to 45,111).

Conclusion

suboptimal diet, high SBP, and high BMI are major causes of cardiometabolic death in Brazil, informing priorities for policy initiatives.  相似文献   
38.
Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs), as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing) and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23) and mdx52 mice (containing deletion mutation of exon 52) with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively) decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.  相似文献   
39.
A simple and efficient numerical method for predicting the remodelling of adaptive materials and structures under applied loading was presented and implemented within a finite element framework. The model uses the trajectorial architecture theory of optimisation to predict the remodelling of material microstructure and structural organisation under mechanical loading. We used the proposed model to calculate the density distribution of proximal femur in the frontal plane. The loading considered was the hip joint contact forces and muscular forces at the attachment sites of the muscles to the bone. These forces were estimated from a separate finite element calculation using a heterogeneous three-dimensional model of the proximal femur. The density distributions obtained by this procedure has a qualitative similarity with in vivo observations. Solutions displayed the characteristic high-density channels that are evident in the Dual X-ray Absorptiometry scan. There is also evidence of the intramedullary canal, as well as low-density regions in the femoral neck. Several parametric studies were carried out to highlight the advantages of the proposed method, which includes fast convergence and low-computational cost. The potential applications of the proposed method in predicting bone structural remodelling in cancer are also briefly discussed.  相似文献   
40.
Leptin is a pleiotropic hormone primarily secreted by adipocytes. A high density of functional Leptin receptors has been reported to be expressed in the hippocampus and other cortical regions of the brain, the physiological significance of which has not been explored extensively. Alzheimer’s disease (AD) is marked by impaired brain metabolism with decreased glucose utilization in those regions which often precede pathological changes. Recent epidemiological studies suggest that plasma Leptin is protective against AD. Specifically, elderly with plasma Leptin levels in the lowest quartile were found to be four times more likely to develop AD than those in the highest quartile. We have previously reported that Leptin modulates AD pathological pathways in vitro through a mechanism involving the energy sensor, AMP-activated protein kinase (AMPK). To this end, we investigated the extent to which activation of AMPK as well as another class of sensors linking energy availability to cellular metabolism, the sirtuins (SIRT), mediate Leptin’s biological activity. Leptin directly activated neuronal AMPK and SIRT in cell lines. Additionally, the ability of Leptin to reduce tau phosphorylation and β-amyloid production was sensitive to the AMPK and sirtuin inhibitors, compound C and nicotinamide, respectively. These findings implicate that Leptin normally acts as a signal for energy homeostasis in neurons. Perhaps Leptin deficiency in AD contributes to a neuronal imbalance in handling energy requirements, leading to higher Aβ and phospho-tau, which can be restored by replenishing low Leptin levels. This may also be a legitimate strategy for therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号