首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   40篇
  国内免费   2篇
  2023年   5篇
  2022年   16篇
  2021年   45篇
  2020年   18篇
  2019年   21篇
  2018年   23篇
  2017年   34篇
  2016年   32篇
  2015年   41篇
  2014年   44篇
  2013年   57篇
  2012年   72篇
  2011年   91篇
  2010年   36篇
  2009年   40篇
  2008年   38篇
  2007年   47篇
  2006年   31篇
  2005年   23篇
  2004年   24篇
  2003年   24篇
  2002年   13篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有795条查询结果,搜索用时 33 毫秒
731.
Fluorescent optical mapping of electrically active cardiac tissues provides a unique method to examine the excitation wave dynamics of underlying action potentials. Such mapping can be viewed as a bridge between cellular level and organ systems physiology, e.g., by facilitating the development of advanced theoretical concepts of arrhythmia. We present the design and use of a high-speed, high-resolution optical mapping system composed entirely of "off the shelf" components. The electrical design integrates a 256 element photodiode array with a 16 bit data acquisition system. Proper grounding and shielding at various stages of the design reduce electromagnetic interference. Our mechanical design provides flexibility in terms of mounting positions and applications (use for whole heart or tissue preparations), while maintaining precise alignment between all optical components. The system software incorporates a user friendly graphical user interface, e.g., spatially recorded action potentials can be represented as intensity graphs or in strip chart format. Thus, this system is capable of displaying cardiac action potentials with high spatiotemporal resolution. Results from cardiac action potential mapping with intact mouse hearts are provided. It should be noted that this system could be readily configured to study isolated myocardial biopsies (e.g., isolated ventricular trabeculae). We describe the details of a versatile, user-friendly system that could be employed for a magnitude of study protocols.  相似文献   
732.
N-WASP (Neural Wiskott Aldrich Syndrome Protein) regulates actin polymerization by activating the Arp2/3 complex and promotes the formation of actin-rich structures such as filopodia. Such actin-rich structures play critical roles in cell adhesion and cell motility. Analysis of the adhesion properties of N-WASP+/+ and N-WASP−/− mouse embryonic fibroblasts to extracellular matrix proteins revealed that N-WASP is critical for cell adhesion to fibronectin. There was no significant difference in the localization of paxillin in the two cell lines, however the vinculin patches in WASP+/+ cells were thicker and more prominent than those in N-WASP−/− cells. The β1 integrins in N-WASP+/+ cells were found in large clusters, while β1 integrins were more dispersed in N-WASP−/− cells. The N-WASP−/− cells migrated more rapidly than N-WASP+/+ cells in a scratch migration assay. Thus, our data suggest that N-WASP deficiency leads to reduced adhesion to fibronectin and increased cell motility.  相似文献   
733.
The classical approaches for protein structure prediction rely either on homology of the protein sequence with a template structure or on ab initio calculations for energy minimization. These methods suffer from disadvantages such as the lack of availability of homologous template structures or intractably large conformational search space, respectively. The recently proposed fragment library based approaches first predict the local structures,which can be used in conjunction with the classical approaches of protein structure prediction. The accuracy of the predictions is dependent on the quality of the fragment library. In this work, we have constructed a library of local conformation classes purely based on geometric similarity. The local conformations are represented using Geometric Invariants, properties that remain unchanged under transformations such as translation and rotation, followed by dimension reduction via principal component analysis. The local conformations are then modeled as a mixture of Gaussian probability distribution functions (PDF). Each one of the Gaussian PDF's corresponds to a conformational class with the centroid representing the average structure of that class. We find 46 classes when we use an octapeptide as a unit of local conformation. The protein 3-D structure can now be described as a sequence of local conformational classes. Further, it was of interest to see whether the local conformations can be predicted from the amino acid sequences. To that end,we have analyzed the correlation between sequence features and the conformational classes.  相似文献   
734.
Genomic variations deep in the intronic regions of pre-mRNA molecules are increasingly reported to affect splicing events. However, there is no general explanation why apparently similar variations may have either no effect on splicing or cause significant splicing alterations. In this work we have examined the structural architecture of pseudoexons previously described in ATM and CFTR patients. The ATM case derives from the deletion of a repressor element and is characterized by an aberrant 5′ss selection despite the presence of better alternatives. The CFTR pseudoexon instead derives from the creation of a new 5′ss that is used while a nearby pre-existing donor-like sequence is never selected. Our results indicate that RNA structure is a major splicing regulatory factor in both cases. Furthermore, manipulation of the original RNA structures can lead to pseudoexon inclusion following the exposure of unused 5′ss already present in their wild-type intronic sequences and prevented to be recognized because of their location in RNA stem structures. Our data show that intrinsic structural features of introns must be taken into account to understand the mechanism of pseudoexon activation in genetic diseases. Our observations may help to improve diagnostics prediction programmes and eventual therapeutic targeting.  相似文献   
735.
Juvenile myoclonic epilepsy is a clinically well-defined, age-related common idiopathic generalized epilepsy syndrome with substantial genetic basis to its etiology. We report identification of a novel epilepsy locus at chromosome 5q12–q14 in a family exhibiting autosomal dominant form of juvenile myoclonic epilepsy from south India. The highest two-point LOD score of 3.3344 was obtained for the microsatellite markers D5S641 and D5S459 at 5q14. Centromeric and telomeric chromosomal boundaries of the locus were defined by D5S624 and D5S428, respectively. The 5q12–q14 locus encompasses about 25 megabases of the genomic region and harbours several candidate genes. Further work involving a detailed mutational analysis of the locus, to isolate the gene responsible for the epilepsy disorder in the family, shall help enhance our understanding of molecular basis of epilepsy disorders.  相似文献   
736.
Regulating B-cell activation and survival in response to TLR signals   总被引:1,自引:0,他引:1  
Following encounters with microbes, cellular activation programs that involve the control of proliferation and survival are initiated in follicular B cells either via the B-cell receptor in a specific antigen-defined manner, or through Toll-like receptors (TLRs) that recognize specific microbial products. This review summarizes and discusses recent findings that shed light on how the nuclear factor kappaB pathway controls and coordinates B-cell division and survival following TLR4 engagement.  相似文献   
737.
Quantum dots (QDs) are nanocrystals of semiconducting material possessing quantum mechanical characteristics with capability to get conjugated with drug moieties. The particle size of QDs varies from 2 to 10 nm and can radiate a wide range of colours depending upon their size. Their wide and diverse usage of QDs across the world is due to their adaptable properties like large quantum yield, photostability, and adjustable emission spectrum. QDs are nanomaterials with inherent electrical characteristics that can be used as drug carrier vehicle and as a diagnostic in the field of nanomedicine. Scientists from various fields are aggressively working for the development of single platform that can sense, can produce a microscopic image and even be used to deliver a therapeutic agent. QDs are the fluorescent nano dots with which the possibilities of the drug delivery to a targeted site and its biomedical imaging can be explored. This review is mainly focused on the different process of synthesis of QDs, their application especially in the areas of malignancies and as a theranostic tool. The attempt is to consolidate the data available for the use of QDs in the biomedical applications.  相似文献   
738.
739.
International Journal of Peptide Research and Therapeutics - Physical properties of a tissue engineering scaffold play a crucial role in maneuvering the cellular fate. Scaffold properties have been...  相似文献   
740.
International Journal of Peptide Research and Therapeutics - Helicobacter pylori is a highly potential pathogen to colonize in the human stomach. This bacterial strain is now alarming serious...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号