首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   40篇
  国内免费   2篇
  2023年   5篇
  2022年   20篇
  2021年   45篇
  2020年   18篇
  2019年   21篇
  2018年   23篇
  2017年   34篇
  2016年   32篇
  2015年   41篇
  2014年   44篇
  2013年   57篇
  2012年   72篇
  2011年   91篇
  2010年   36篇
  2009年   40篇
  2008年   38篇
  2007年   47篇
  2006年   31篇
  2005年   23篇
  2004年   24篇
  2003年   24篇
  2002年   13篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有799条查询结果,搜索用时 15 毫秒
691.
692.
693.
Rv3868, a conserved hypothetical protein of the ESAT-6 secretion system of Mycobacterium tuberculosis, is essential for the secretion of at least four virulence factors. Each protein chain is approximately 63 kDa and assembles into a hexamer. Limited proteolysis demonstrates that it consists of two domains joined by a linker. The N-terminal domain is a compact, helical domain of approximately 30 kDa and apparently functions to regulate the ATPase activity of the C-terminal domain and the oligomerization. The nucleotide binding site is situated in the C-terminal domain, which exhibits ATP-dependent self-association. It is also the oligomerization domain. Dynamic fluorescence quenching studies demonstrate that the domain is proximal to the C terminus in the apoprotein and exhibits a specific movement upon ATP binding. In silico modeling of the domains suggests that Arg-429 of a neighboring subunit forms a part of the binding site upon oligomerization. Mutational analysis of binding site residues demonstrates that the Arg-429 functions as the important "sensor arginine" in AAA-ATPases. Protein NMR experiments involving CFP-10 and activity assays rule out a general chaperone-like function for Rv3868. On the other hand, ATP-dependent "open-close" movements of the individual domains apparently enable it to interact and transfer energy to co-proteins in the ESX-1 pathway.  相似文献   
694.
Transient interactions between cancer stem cells and components of the tumor microenvironment initiate various signaling pathways crucial for carcinogenesis. Predominant hyaluronan (HA) receptor, CD44 is structurally and functionally one of the most variable cell surface receptors having the potential to generate a diverse repertory of CD44 isoforms by alternative splicing of variant exons and post-translational modifications. A structurally distinctive variant of CD44, CD44v10, has an inevitable role in malignant progression, invasion, and metastasis. This can be attributed to the binding of HA with CD44v10, which demonstrates a completely different behavioral pattern as compared to the other spliced variants of CD44 molecule. Absence of a comprehensively predicted crystal structure of human CD44s and CD44v10 is an impediment in understanding the resultant structural alterations caused by the binding of HA. Thus, in this study, we aim to predict the CD44s and CD44v10 structures to their closest native confirmation and study the HA binding-induced structural perturbations using homology modeling, molecular docking, and MD simulation approach. The results depicted that modeled 3D structures of CD44s and CD44v10 isoforms were found to be stable throughout MD simulations; however, a substantial decrease was observed in the binding affinity of HA with CD44v10 (?5.355 kcal/mol) as compared to CD44s. Furthermore, loss and gain of several H-bonds and hydrophobic interactions in CD44v10–HA complex during the simulation process not only elucidated the reason for decreased binding affinity for HA but also prompted toward the plausible role of HA-induced structural perturbations in occurrence and progression of carcinogenesis.  相似文献   
695.
To comprehend the events during developmental biology, fundamental knowledge about the basic machinery of regulation is a prerequisite. MicroRNA (miRNAs) act as regulators in most of the biological processes and recently, it has been concluded that miRNAs can act as modulatory factors even during developmental process from lower to higher animal. Zebrafish, because of its favorable attributes like tiny size, transparent embryo, and rapid external embryonic development, has gained a preferable status among all other available experimental animal models. Currently, zebrafish is being utilized for experimental studies related to stem cells, regenerative molecular medicine as well drug discovery. Therefore, it is important to understand precisely about the various miRNAs that controls developmental biology of this vertebrate model. In here, we have discussed about the miRNA-controlled zebrafish developmental stages with a special emphasis on different miRNA families such as miR-430, miR-200, and miR-133. Moreover, we have also reviewed the role of various miRNAs during embryonic and vascular development stages of zebrafish. In addition, efforts have been made to summarize the involvement of miRNAs in the development of different body parts such as the brain, eye, heart, muscle, and fin, etc. In each section, we have tried to fulfill the gaps of zebrafish developmental biology with the help of available knowledge of miRNA research. We hope that precise knowledge about the miRNA-regulated developmental stages of zebrafish may further help the researchers to efficiently utilize this vertebrate model for experimental purpose.  相似文献   
696.
697.
In this study, reverse micellar extraction of papain model system was performed using cetyltrimethylammonium bromide (CTAB)/iso-octane/hexanol/butanol system to optimize the forward and back extraction efficiency (BEE). A maximum forward extraction efficiency of 55.0, 61.0, and 54% was achieved with an aqueous phase pH of 11.0, 150?mM CTAB/iso-octane and 0.1?M NaCl, respectively. Taguchi’s orthogonal array was applied to optimize the pH of stripping phase, concentration of isopropyl alcohol (IPA) and potassium chloride (KCl) for maximizing BEE. The optimal levels of stripping phase pH, concentration of IPA and KCl were found to be 6, 20% (v/v), and 0.8?M, respectively. Under these optimal levels, the BEE was found to be 88% after which enzyme activity was recovered with 2.5-fold purification. Further optimization was performed using artificial neural network-linked genetic algorithm, where the BEE was improved to 90.52% with pH 6, IPA (%)?=?19.938, and KCl (M)?=?0.729.  相似文献   
698.
Immunodiagnosis of both pulmonary tuberculosis (PTB) and extrapulmonary tuberculosis has remained challenging. In the present work, in-house developed synthetic peptide based antibody detection assay was assessed and validated with antigen based assay for effective diagnosis of tuberculosis (TB). The study population included both tuberculous meningitis (TBM) (n = 60) admitted to Neurology IPD wards of our Institute hospital and PTB cases (n = 57) recruited from high TB endemic zones. Peptides of five highly immunogenic Mycobacterium tuberculosis (MTB) proteins (Ag85B, 45 kDa, HSP-16, CFP-10 and ESAT-6) were designed and synthesized. The designed peptides were evaluated in samples of both TBM and PTB cases, respectively, using in-house developed antibody detection method. The developed tests were further compared and validated with MTB native proteins based antibody detection ELISA. Sensitivity and specificity of peptide assay were significantly higher or almost similar (p < 0.05) in TBM and PTB as compared to native proteins based ELISA. Among all peptides, diagnostic reliability of Ag 85B peptide A1 was higher for both forms of TB. Peptide-based antibody assay is cost effective, simple and may be interchangeable with conventional Antigen based ELISA assays for effective diagnosis of TB in the developing world.  相似文献   
699.
700.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号