首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1081篇
  免费   106篇
  2023年   7篇
  2022年   6篇
  2021年   16篇
  2020年   9篇
  2019年   21篇
  2018年   18篇
  2017年   20篇
  2016年   20篇
  2015年   34篇
  2014年   43篇
  2013年   38篇
  2012年   62篇
  2011年   74篇
  2010年   41篇
  2009年   39篇
  2008年   56篇
  2007年   47篇
  2006年   63篇
  2005年   54篇
  2004年   52篇
  2003年   58篇
  2002年   37篇
  2001年   23篇
  2000年   16篇
  1999年   19篇
  1998年   16篇
  1997年   8篇
  1996年   7篇
  1995年   10篇
  1993年   11篇
  1992年   16篇
  1991年   13篇
  1990年   16篇
  1989年   12篇
  1988年   20篇
  1987年   11篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   12篇
  1981年   6篇
  1980年   6篇
  1979年   12篇
  1977年   5篇
  1975年   6篇
  1974年   8篇
  1973年   6篇
  1972年   5篇
  1902年   6篇
排序方式: 共有1187条查询结果,搜索用时 131 毫秒
131.
Subversion of actin dynamics by EPEC and EHEC   总被引:6,自引:0,他引:6  
During the course of infection, enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) subvert the host cell signalling machinery and hijack the actin cytoskeleton to tighten their interaction with the gut epithelium, while avoiding phagocytosis by professional phagocytes. Much progress has been made recently in our understanding of how EPEC and EHEC regulate the pathways leading to local activation of two regulators of actin cytoskeleton dynamics, the Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex. A recent highlight is the unravelling of functions for effector proteins (particularly Tir, TccP, Map and EspG/EspG2) that are injected into the host cell by a type III secretion system.  相似文献   
132.
EspF of enteropathogenic Escherichia coli targets mitochondria and subverts a number of cellular functions. EspF consists of six putative Src homology 3 (SH3) domain binding motifs. In this study we identified sorting nexin 9 (SNX9) as a host cell EspF binding partner protein, which binds EspF via its amino-terminal SH3 region. Coimmunoprecipitation and confocal microscopy showed specific EspF-SNX9 interaction and non-mitochondrial protein colocalization in infected epithelial cells.  相似文献   
133.
Gene structure prediction is one of the most important problems in computational molecular biology. It involves two steps: the first is finding the evidence (e.g., predicting splice sites) and the second is interpreting the evidence, that is, trying to determine the whole gene structure by assembling its pieces. In this paper, we suggest a combinatorial solution to the second step, which is also referred to as the "Exon Assembly Problem." We use a similarity-based approach that aims to produce a single gene structure based on similarities to a known homologous sequence. We target the sparse case, where filtering has been applied to the data, resulting in a set of O(n) candidate exon blocks. Our algorithm yields an O(n(2) square root of n) solution.  相似文献   
134.
Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) induce drastic reorganization of the microfilament cytoskeleton. EHEC and EPEC translocate Tir (translocated intimin receptor) which, once inserted into the host plasma membrane, binds the bacterial outer membrane adhesin intimin. Tir(EPEC) then becomes tyrosine phosphorylated facilitating the recruitment and site-specific binding of the eukaryotic adaptor Nck, which in turn binds and activates the Wiskott-Aldrich syndrome protein (N-WASP), leading to actin-related protein 2/3 (Arp2/3) complex-mediated actin polymerization. In contrast, Tir(EHEC) has no Nck binding site; instead, EHEC utilizes the translocated effector TccP (Tir-cytoskeleton coupling protein) to bind and activate N-WASP. Here we report a novel class of EPEC that translocates both TccP and Tir(EPEC)-like effector molecules. Consistent with these characteristics, we show that both the Tir-Nck and Tir:TccP actin remodelling pathways function simultaneously during infection, making this a novel and versatile EPEC category.  相似文献   
135.
Contrary to theories of rational choice, adding alternatives to a choice set can change the choices made by both humans and animals. This is usually done by adding an inferior decoy to a choice set of two favoured options that are characterized on two distinct dimensions. We presented wild, free-living rufous hummingbirds (Selasphorus rufus) with choices between two or three options that varied in a single dimension only. The options varied in concentration, in volume or in corolla length. When the options varied in concentration, the addition of a medium option to a choice set of a low and a high concentration caused birds to increase their preference for the high option. However, they decreased their preference for the high concentration option when a low option was added to a choice set of high and medium concentrations. When the options varied only in volume, the addition of a high volume option to a choice set of low and medium options decreased the birds’ preference for the medium option. We saw no effects of adding a third option when the options varied in corolla length alone. Hummingbirds, then, make context-dependent decisions even when the options vary in only a single dimension although which effect occurs seems to depend on the dimension being manipulated. None of the current theories alone adequately explain these results.  相似文献   
136.
137.
Xiong K  Punihaole D  Asher SA 《Biochemistry》2012,51(29):5822-5830
We utilize 198 and 204 nm excited UV resonance Raman spectroscopy (UVRR) and circular dichroism spectroscopy (CD) to monitor the backbone conformation and the Gln side chain hydrogen bonding (HB) of a short, mainly polyGln peptide with a D(2)Q(10)K(2) sequence (Q10). We measured the UVRR spectra of valeramide to determine the dependence of the primary amide vibrations on amide HB. We observe that a nondisaggregated Q10 (NDQ10) solution (prepared by directly dissolving the original synthesized peptide in pure water) exists in a β-sheet conformation, where the Gln side chains form hydrogen bonds to either the backbone or other Gln side chains. At 60 °C, these solutions readily form amyloid fibrils. We used the polyGln disaggregation protocol of Wetzel et al. [Wetzel, R., et al. (2006) Methods Enzymol.413, 34-74] to dissolve the Q10 β-sheet aggregates. We observe that the disaggregated Q10 (DQ10) solutions adopt PPII-like and 2.5(1)-helix conformations where the Gln side chains form hydrogen bonds with water. In contrast, these samples do not form fibrils. The NDQ10 β-sheet solution structure is essentially identical to that found in the NDQ10 solid formed upon evaporation of the solution. The DQ10 PPII and 2.5(1)-helix solution structure is essentially identical to that in the DQ10 solid. Although the NDQ10 solution readily forms fibrils when heated, the DQ10 solution does not form fibrils unless seeded with the NDQ10 solution. This result demonstrates very high activation barriers between these solution conformations. The NDQ10 fibril secondary structure is essentially identical to that of the NDQ10 solution, except that the NDQ10 fibril backbone conformational distribution is narrower than in the dissolved species. The NDQ10 fibril Gln side chain geometry is more constrained than when NDQ10 is in solution. The NDQ10 fibril structure is identical to that of the DQ10 fibril seeded by the NDQ10 solution.  相似文献   
138.
Asher AJ  Waldron LS  Power ML 《Parasitology》2012,139(8):1005-1013
Humans are infected by 2 genetic assemblages (A and B) of Giardia duodenalis, a protozoan parasite that causes gastro-intestinal disease. Sub-assemblages AI, AII, BIII and BIV are commonly identified in human cases. Detection requires amplification of G. duodenalis loci. Subsequent DNA sequencing or restriction fragment length polymorphism (RFLP) identifies sub-assemblages but is expensive (DNA sequencing) or insensitive (RFLP). This study investigated a fluorescence-based detection method, using terminal-restriction fragment length polymorphism (T-RFLP) of the glutamate dehydrogenase gene to characterize human infections. Clinical samples (n=73), positive for Giardia were collected in New South Wales, Australia, and were used to evaluate T-RFLP detection. The accuracy and sensitivity of T-RFLP detection was established by comparison to DNA sequencing and RFLP. Sub-assemblage assignment by T-RFLP identified BIV as the common subtype in N.S.W cases, whilst AI, AII and BIII were also detected. When compared to DNA sequencing and RFLP, analysis by T-RFLP was a reliable and reproducible method. Automated fluorescent detection enabled accurate sizing of restriction fragments and provided a sensitive alternative to RFLP. Discrimination of sub-assemblages by T-RFLP was comparable to DNA sequencing, but was efficient and inexpensive. The protocol described here provides a rapid and sensitive diagnostic tool for routine sample screenings in epidemiological research.  相似文献   
139.
Autophagy is an evolutionary conserved process of bulk degradation and nutrient sequestration that occurs in all eukaryotic cells. Yet, in recent years, autophagy has also been shown to play a role in the specific degradation of individual proteins or protein aggregates as well as of damaged organelles. The process was initially discovered in yeast and has also been very well studied in mammals and, to a lesser extent, in plants. In this review, we summarize what is known regarding the various functions of autopahgy in plants but also attempt to address some specific issues concerning plant autophagy, such as the insufficient knowledge regarding autophagy in various plant species other than Arabidopsis, the fact that some genes belonging to the core autophagy machinery in various organisms are still missing in plants, the existence of autophagy multigene families in plants and the possible operation of selective autophagy in plants, a study that is still in its infancy. In addition, we point to plant-specific autophagy processes, such as the participation of autophagy during development and germination of the seed, a unique plant organ. Throughout this review, we demonstrate that the use of innovative bioinformatic resources, together with recent biological discoveries (such as the ATG8-interacting motif), should pave the way to a more comprehensive understanding of the multiple functions of plant autophagy.  相似文献   
140.
Cutter AD  Wang GX  Ai H  Peng Y 《Molecular ecology》2012,21(6):1345-1359
Molecular hyperdiversity has been documented in viruses, prokaryotes and eukaryotes. Such organisms undermine the assumptions of the infinite-sites mutational model, because multiple mutational events at a site comprise a non-negligible portion of polymorphisms. Moreover, different sampling schemes of individuals from species with subdivided populations can profoundly influence resulting patterns and interpretations of molecular variation. Inspired by molecular hyperdiversity in the nematode Caenorhabditis sp. 5, which exhibits average pairwise differences among synonymous sites of >5% as well as modest population structure, we investigated via coalescent simulation the joint effects of a finite-sites mutation (FSM) process and population subdivision on the variant frequency spectrum. From many demes interconnected through a stepping-stone migration model, we constructed local samples from a single deme, pooled samples from several demes and scattered samples of a single individual from numerous demes. Compared with a single panmictic population at equilibrium, we find that high population mutation rates induce a deficit of rare variants (positive Tajima's D) under a FSM model. Population structure also induces such a skew for local samples when migration is high and for pooled samples when migration is low. Contrasts of sampling schemes for C. sp. 5 imply high mutational input coupled with high migration. We propose that joint analysis of local, pooled and scattered samples for species with subdivided populations provides a means of improving inference of demographic history, by virtue of the partially distinct patterns of polymorphism that manifest when sequences are analyzed according to differing sampling schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号