首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   44篇
  488篇
  2023年   4篇
  2022年   15篇
  2021年   16篇
  2020年   12篇
  2019年   11篇
  2018年   11篇
  2017年   16篇
  2016年   14篇
  2015年   22篇
  2014年   19篇
  2013年   33篇
  2012年   46篇
  2011年   45篇
  2010年   16篇
  2009年   21篇
  2008年   22篇
  2007年   22篇
  2006年   12篇
  2005年   20篇
  2004年   18篇
  2003年   15篇
  2002年   8篇
  1999年   5篇
  1998年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1965年   1篇
  1962年   2篇
排序方式: 共有488条查询结果,搜索用时 15 毫秒
81.
Whole extract of rhizomes of Podophyllum hexandrum has been reported earlier by our group to render whole-body radioprotection. High-altitude P. hexandrum (HAPH) was therefore fractionated using solvents of varying polarity (non-polar to polar) and the different fractions were designated as, n-hexane (HE), chloroform (CE), alcohol (AE), hydro-alcohol (HA) and water (WE). The total polyphenolic content (mg% of quercetin) was determined spectrophotometrically, while. The major constituents present in each fraction were identified and characterized using LC-APCI/MS/MS. In vitro screening of the individual fractions, rich in polyphenols and lignans, revealed several bioactivities of direct relevance to radioprotection e.g. metal-chelation activity, antioxidant activity, DNA protection, inhibition of radiation (250 Gy) and iron/ascorbate-induced lipid peroxidation (LPO). CE exhibited maximum protection to plasmid (pBR322) DNA in the plasmid relaxation assay (68.09% of SC form retention). It also showed maximal metal chelation activity (41.59%), evaluated using 2,2-bipyridyl assay, followed by AE (31.25%), which exhibited maximum antioxidant potential (lowest absorption unit value: 0.0389± 0.00717) in the reducing power assay. AE also maximally inhibited iron/ascorbate-induced and radiation-induced LPO (99.76 and 92.249%, respectively, at 2000 g/ml) in mouse liver homogenate. Under conditions of combined stress (radiation (250 Gy) + iron/ascorbate), at a concentration of 2000 g/ml, HA exhibited higher percentage of inhibition (93.05%) of LPO activity. HA was found to be effective in significantly (p < 0.05) lowering LPO activity over a wide range of concentrations as compared to AE. The present comparative study indicated that alcoholic (AE) and hydro-alcoholic (HA) fractions are the most promising fractions, which can effectively tackle radiation-induced oxidative stress.  相似文献   
82.
The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency (k(cat)/K(m)) of ~10(4) M(-1) s(-1) after directed evolution. In the high-resolution crystal structure of the enzyme, all but one of the designed residues adopt the designed conformation. The designed enzyme efficiently catalyzes the hydrolysis of the R(P) isomer of a coumarinyl analog of the nerve agent cyclosarin, and it shows marked substrate selectivity for coumarinyl leaving groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a general approach for exploring their untapped catalytic potential for new reactivities.  相似文献   
83.
Overexpression of anti-apoptotic Bcl-2 is often observed in a wide variety of human cancers. It prevents the induction of apoptosis in neoplastic cells and contributes to resistance to chemotherapy. RNA interference has emerged as an efficient and selective technique for gene silencing. The potential to use small interfering RNA (siRNA) as a therapeutic agent for the treatment of cancer has elicited a great deal of interest. However, insufficient cellular uptake and poor stability have limited its therapeutic applications. The purpose of this study was to prepare chitosan nanoparticles via ionic gelation of chitosan by tripolyphosphate for effective delivery of siRNA to silence the anti-apoptotic Bcl-2 gene in neoplastic cells. Chitosan nanoparticles loaded with siRNA were in the size range 190 to 340 nm with a polydispersive index ranging from 0.04 to 0.2. They were able to completely bind with siRNA, provide protection against nuclease degradation, and enhance the transfection. Cell culture studies revealed that nanoparticles with entrapped siRNA could efficiently silence the antiapoptotic Bcl-2 gene. Studies on Swiss albino mice showed that siRNA could be effectively delivered through nanoparticles. There was significant decrease in the tumor volume. Blocking the expression of anti-apoptotic Bcl-2 can enhance the sensitivity of cancerous cells to anti-cancer drugs and the apoptosis rate. Therefore, nanoformulations with siRNA can be promoted as an adjuvant therapy in combination with anti-cancer drugs.  相似文献   
84.
The clearance of host cell DNA is a critical goal for purification process development for recombinant Ad5 (rAd5) based vaccines and gene therapy products. We have evaluated the clearance of DNA by a rAd5 purification process utilizing nuclease digestion, ultrafiltration, and anion exchange (AEX) chromatography and found residual host cell DNA to consistently reach a limiting value of about 100 pg/10(11) rAd5 particles. Characterization of the purified rAd5 product using serial AEX chromatography, hydroxyapatite chromatography, or nuclease treatment with and without particle disruption showed that the residual DNA was associated with virus particles. Using a variety of additional physical characterization methods, a population of rAd5 virus in an aggregated state was detected. Aggregation was eliminated using nonionic detergents to attenuate hydrophobic interactions and sodium chloride to attenuate electrostatic interactions. After implementation of these modifications, the process was able to consistently reduce host cell DNA to levels at or below 5 pg/10(11) rAd5 particles, suggesting that molecular interactions between cellular DNA and rAd5 are important determinants of process DNA clearance capability and that the co-purifying DNA was not encapsidated.  相似文献   
85.
Plasmid DNA purification development has been driven by the increased need for large quantities of highly purified, sterile plasmid DNA for clinical studies. Detailed characterization and development of the terminal sterile filtration process step is often limited due to time constraints and the scarcity of sufficient quantities of purified plasmid. However, the large size of the plasmid molecule and variations in conformation can lead to significant yield losses if this process step is not optimized. In this work, the gradual pore-plugging model of flow decay was found to be valid for plasmid DNA by using an ultra scaledown apparatus (1-4 cm(2) filter area). Filtration capacity was found to be insensitive to pressure. Multiple filter types were screened and both source and composition of materials were found to affect filter capacity dramatically. The filter capacity for plasmid was improved by increasing plasmid concentrations as well as by modifying buffer conditions to reduce the apparent size of the plasmid. Filtration capacities varied over a greater than 2 log range when plasmids with sizes ranging from 5.5 to 11 kb and supercoiled plasmid content of 55-95% were explored. Larger plasmids and feeds with lower supercoiled contents led to reduced capacities. These results can be used to define conditions for scale-up of plasmid sterile filtration, as evidenced by processing a 30 g lot using a filtration area of 1,000 cm(2), with a 96% yield, based on filtration capacity data from 4 cm(2) test filters.  相似文献   
86.
87.
Sagar AD  Briggs WR 《Plant physiology》1990,94(4):1663-1670
The effects of high light stress on chloroplast ultrastructure and protein and mRNA composition were investigated in carotenoid-deficient peas (Pisum sativum, L.). In low light, the thylakoid membrane polypeptide pattern was altered, with several prominent chlorophyll-binding proteins present in diminished amounts. This change was found to be reflected in the ultrastructural organization of internal chloroplast membranes. In contrast to the normal grana stacking found in the controls, carotenoid-deficient plastids contained long, unstacked lamellae. Exposure to photooxidative light that resulted in destruction of >70% of chlorophyll did not lead to changes in total RNA and total cellular protein patterns. This treatment did lead to gross alterations in the chloroplast structure. Within 24 hours the plastid was seen as a swollen vesicle with only a few membrane remnants still present. Accumulation of five plastid-encoded mRNAs encoding a diverse array of photosynthetic proteins was found to be affected in different ways. While psaA mRNA was rapidly reduced by more than 75%, levels of psbF/E and atpB/E were reduced by 50%. psbA and petA mRNAs, on the other hand, appeared to be more resistant to photobleaching and remained relatively unchanged during 24 hours of high fluence-rate light treatment.  相似文献   
88.
Photodegradation is one of the major pathways of the degradation of drugs. Some therapeutic agents and excipients are highly sensitive to light and undergo significant degradation, challenging the quality and the stability of the final product. The adequate knowledge of photodegradation mechanisms and kinetics of photosensitive therapeutic entities or excipients is a pivotal aspect in the product development phase. Hence, various pharmaceutical regulatory agencies, across the world, mandated the industries to assess the photodegradation of pharmaceutical products from manufacturing stage till storage, as per the guidelines given in the International Conference on Harmonization (ICH). Recently, numerous formulation and/or manufacturing strategies has been investigated for preventing the photodegradation and enhancing the photostability of photolabile components in the pharmaceutical dosage forms. The primary focus of this review is to discuss various photodegradation mechanisms, rate kinetics, and the factors that influence the rate of photodegradation. We also discuss light-induced degradation of photosensitive lipids and polymers. We conclude with a brief note on different approaches to improve the photostability of photosensitive products.  相似文献   
89.
Autophagy and senescence are 2 distinct pathways that are importantly involved in acute kidney injury and renal repair. Recent data indicate that the 2 processes might be interrelated. To investigate the potential link between autophagy and senescence in the kidney we isolated primary tubular epithelial cells (PTEC) from wild-type mice and monitored the occurrence of cellular senescence during autophagy activation and inhibition. We found that the process of cell isolation and transfer into culture was associated with a strong basal autophagic activation in PTEC. Specific inhibition of autophagy by silencing autophagy-related 5 (Atg5) counteracted the occurrence of senescence hallmarks under baseline conditions. Reduced senescent features were also observed in Atg5 silenced PTEC after γ-irradiation and during H-Ras induced oncogenic senescence, but the response was less uniform in these stress models. Senescence inhibition was paralleled by better preservation of a mature epithelial phenotype in PTEC. Interestingly, treatment with rapamycin, which acts as an activator of autophagy, also counteracted the occurrence of senescence features in PTEC. While we interpret the anti-senescent effect of rapamycin as an autophagy-independent effect of mTOR-inhibition, the more specific approach of Atg5 silencing indicates that overactivated autophagy can have pro-senescent effects in PTEC. These results highlight the complex interaction between cell culture dependent stress mechanisms, autophagy and senescence.  相似文献   
90.
Low-dose heparin prophylaxis against fatal pulmonary embolism has been studied in a random and prospective trial in 300 patients over the age of 50 who underwent major surgery. A dose of 5,000 IU mucous heparin sodium given two hours preoperatively and for five days post operatively prevented fatal pulmonary embolism in all 156 patients so treated, whereas out of 144 patients in the unheparinized group 6 (4·2%) died of pulmonary embolism. This difference is statistically significant. There was no increase in operative or post-operative bleeding or in the formation of wound haematomas in the heparinized group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号