首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2417篇
  免费   187篇
  2604篇
  2023年   20篇
  2022年   38篇
  2021年   74篇
  2020年   33篇
  2019年   51篇
  2018年   60篇
  2017年   44篇
  2016年   76篇
  2015年   125篇
  2014年   115篇
  2013年   159篇
  2012年   210篇
  2011年   196篇
  2010年   124篇
  2009年   92篇
  2008年   140篇
  2007年   130篇
  2006年   138篇
  2005年   119篇
  2004年   104篇
  2003年   90篇
  2002年   73篇
  2001年   31篇
  2000年   21篇
  1999年   29篇
  1998年   12篇
  1997年   9篇
  1996年   14篇
  1995年   9篇
  1994年   9篇
  1993年   7篇
  1992年   14篇
  1991年   18篇
  1990年   14篇
  1989年   13篇
  1988年   14篇
  1987年   14篇
  1986年   10篇
  1985年   13篇
  1984年   12篇
  1983年   9篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   12篇
  1976年   10篇
  1975年   6篇
  1974年   11篇
  1973年   10篇
  1967年   6篇
排序方式: 共有2604条查询结果,搜索用时 15 毫秒
931.
932.

Background

Substantial geographic variation exists in percutaneous coronary intervention (PCI) use across the United States. It is unclear the extent to which high PCI utilization can be explained by PCI for inappropriate indications. The objective of this study was to examine the relationship between PCI rates across regional healthcare markets utilizing hospital referral regions (HRRs) and PCI appropriateness.

Methods

The number of PCI procedures in each HRR was obtained from the 2010 100% Medicare limited data set. HRRs were divided into quintiles of PCI utilization with increasing rates of utilization progressing to quintile 5. NCDR CathPCI Registry® data were used to evaluate patient characteristics, appropriate use criteria (AUC), and outcomes across the HRR quintiles defined by PCI utilization with the study population restricted to HRRs where ≥ 80% of the PCIs were performed at institutions participating in the registry. PCI appropriateness was defined using 2012 AUC by the American College of Cardiology (ACC)/American Heart Association (AHA)/The Society for Cardiovascular Angiography and Interventions (SCAI).

Results

Our study cohort comprised of 380,981 patients treated at 178 HRRs. Mean PCI rates per 1,000 increased from 4.6 in Quintile 1 to 10.8 in Quintile 5. The proportion of non-acute PCIs was 27.7% in Quintile 1 increasing to 30.7% in Quintile 5. Significant variation (p < 0.001) existed across the quintiles in the categorization of appropriateness across HRRs of utilization with more appropriate PCI in lower utilization areas (Appropriate: Q1, 76.53%, Q2, 75.326%, Q3, 75.23%, Q4, 73.95%, Q5, 72.768%; Inappropriate: Q1 3.92%, Q2 4.23%, Q3 4.32%, Q4 4.35%, Q5 4.05%; Uncertain: Q1 8.29%, Q2 8.84%, Q3 8.08%, Q4 9.01%, Q5 8.93%; Not Mappable: Q1 11.26%, Q2 11.67%, Q3 12.37%, Q4 12.69%, Q5 14.34%). There was no difference in risk-adjusted mortality across quintiles of PCI utilization.

Conclusions

Geographic regions with lower PCI rates have a higher proportion of PCIs performed for appropriate indications. Areas that perform more PCIs also appear to perform more elective PCI and many could not be mapped by the AUC.  相似文献   
933.
934.
935.
We report our attempts at improving the oral efficacy of low-nanomolar inhibitors of xanthine oxidase from isocytosine series through chemical modifications. Our lead compound had earlier shown good in vivo efficacy when administered intraperitoneally but not orally. Several modifications are reported here which achieved more than twofold improvement in exposure. A compound with significant improvement in oral efficacy was also obtained.  相似文献   
936.
The intercalated disk (ID) is a specialized subcellular region that provides electrical and mechanical connections between myocytes in the heart. The ID has a clearly defined passive role in cardiac tissue, transmitting mechanical forces and electrical currents between cells. Recent studies have shown that Na+ channels, the primary current responsible for cardiac excitation, are preferentially localized at the ID, particularly within nanodomains such as the gap junction–adjacent perinexus and mechanical junction–associated adhesion-excitability nodes, and that perturbations of ID structure alter cardiac conduction. This suggests that the ID may play an important, active role in regulating conduction. However, the structures of the ID and intercellular cleft are not well characterized and, to date, no models have incorporated the influence of ID structure on conduction in cardiac tissue. In this study, we developed an approach to generate realistic finite element model (FEM) meshes replicating nanoscale of the ID structure, based on experimental measurements from transmission electron microscopy images. We then integrated measurements of the intercellular cleft electrical conductivity, derived from the FEM meshes, into a novel cardiac tissue model formulation. FEM-based calculations predict that the distribution of cleft conductances is sensitive to regional changes in ID structure, specifically the intermembrane separation and gap junction distribution. Tissue-scale simulations predict that ID structural heterogeneity leads to significant spatial variation in electrical polarization within the intercellular cleft. Importantly, we found that this heterogeneous cleft polarization regulates conduction by desynchronizing the activation of postjunctional Na+ currents. Additionally, these heterogeneities lead to a weaker dependence of conduction velocity on gap junctional coupling, compared with prior modeling formulations that neglect or simplify ID structure. Further, we found that disruption of local ID nanodomains can either slow or enhance conduction, depending on gap junctional coupling strength. Our study therefore suggests that ID nanoscale structure can play a significant role in regulating cardiac conduction.  相似文献   
937.
Protein degradation is critical for proteostasis, and the addition of polyubiquitin chains to a substrate is necessary for its recognition by the 26S proteasome. Therapeutic intervention in the ubiquitin proteasome system has implications ranging from cancer to neurodegeneration. Novel screening methods and chemical biology tools for targeting E1-activating, E2-conjugating and deubiquitinating enzymes will be discussed in this review. Approaches for targeting E3 ligase-substrate interactions as well as the proteasome will also be covered, with a focus on recently described approaches.  相似文献   
938.
Du WW  Yang BB  Yang BL  Deng Z  Fang L  Shan SW  Jeyapalan Z  Zhang Y  Seth A  Yee AJ 《PloS one》2011,6(11):e26396
Overexpression of EGFR and versican has been reported in association with breast cancers. Considered oncogenic, these molecules may be attractive therapeutic targets. Possessing anti-apoptotic and drug resistant properties, overexpression of these molecules is accompanied by selective sensitization to the process of apoptosis. In this study, we exogenously expressed a versican G3 construct in breast cancer cell lines and analyzed the effects of G3 on cell viability in fetal bovine serum free conditioned media and evaluated the effects of apoptotic agent C2-ceramide, and chemotherapeutic agents including Docetaxel, Doxorubicin, and Epirubicin. Versican G3 domain enhanced tumor cell resistance to apoptosis when cultured in serum free medium, Doxorubicin, or Epirubicin by up-regulating pERK and GSK-3β (S9P). However, it could be prevented by selective EGFR inhibitor AG 1478 and selective MEK inhibitor PD 98059. Both AG 1478 and PD 98059 enhanced expression of pSAPK/JNK, while selective JNK inhibitor SP 600125 enhanced expression of GSK-3β (S9P). Versican G3 promoted cell apoptosis induced by C2-ceramide or Docetaxel by enhancing expression of pSAPK/JNK and decreasing expression of GSK-3β (S9P), an observation blocked by AG 1478 or SP 6000125. Inhibition of endogenous versican expression by siRNA or reduction of versican G3's expression by linking G3 with 3'UTR prevented G3 modulated cell apoptosis. The dual roles of G3 in modulating breast cancer cell resistance to chemotherapeutic agents may in part explain a potential mechanism for breast cancer cell resistance to chemotherapy and EGFR therapy. The apoptotic effects of chemotherapeutics depend upon the activation and balance of down stream signals in the EGFR pathway. GSK-3β (S9P) appears to function as a key checkpoint in this balance of apoptosis and anti-apoptosis. Investigation and potential consideration of targeting GSK-3β (S9P) merits further study.  相似文献   
939.
Accumulating evidence suggests that ubiquitination plays a role in cancer by changing the function of key cellular proteins. Previously, we isolated BCA2 gene from a library enriched for breast tumor mRNAs. The BCA2 protein is a RING-type E3 ubiquitin ligase and is overexpressed in human breast tumors. In order to deduce the biochemical and biological function of BCA2, we searched for BCA2-binding partners using human breast and fetal brain cDNA libraries and BacterioMatch two-hybrid system. We identified 62 interacting partners, the majority of which were found to encode ubiquitin precursor proteins including ubiquitin C and ubiquitin A-52. Using several deletion and point mutants, we found that the BCA2 zinc finger (BZF) domain at the NH(2) terminus specifically binds ubiquitin and ubiquitinated proteins. The autoubiquitination activity of BCA2, RING-H2 mutant, BZF mutant, and various lysine mutants of BCA2 were investigated. Our results indicate that the BCA2 protein is strongly ubiquitinated and no ubiquitination is detected with the BCA2 RING-H2 mutant, indicating that the RING domain is essential for autoubiquitination. Mutation of the K26 and K32 lysines in the BZF domain also abrogated autoubiquitination activity. Interestingly, mutation of the K232 and K260 lysines in and near the RING domain resulted in an increase in autoubiquitination activity. Additionally, in cellular migration assays, BCA2 mutants showed altered cell motility compared with wild-type BCA2. On the basis of these findings, we propose that BCA2 might be an important factor regulating breast cancer cell migration/metastasis. We put forward a novel model for BCA2 E3 ligase-mediated cell regulation.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号