首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   1篇
  110篇
  2022年   3篇
  2021年   3篇
  2019年   4篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   12篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1971年   1篇
  1970年   1篇
  1947年   1篇
  1945年   1篇
  1943年   1篇
  1937年   1篇
  1933年   1篇
  1931年   2篇
  1914年   1篇
排序方式: 共有110条查询结果,搜索用时 0 毫秒
11.
12.
13.
14.
We determined whether activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and a subsequent increase in cytosolic calcium concentration ([Ca2+]i) was an obligatory signaling event mediating the increase in transendothelial permeability induced by bradykinin (BK) and α-thrombin (α-T). Both BK and α-T (each at a concentration range of 0.01–1 μM) caused dose-dependent increases in transendothelial 125I-albumin permeability in cultured bovine pulmonary artery endothelial cell monolayers. Both agonists also produced a rise in inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] by 10 sec that was followed by a prolonged increase in [Ca2+]i. Pretreatment of endothelial cells with the PLC inhibitor, 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dion [(U73122) at 10 μM for 15 min], prevented the increases in Ins(1,4,5)P3 and [Ca2+]i induced by both BK and α-T. However, inhibition of PLC with U73122 or another PLC inhibitor, neomycin, did not prevent the increase in endothelial permeability induced by either agonist. In contrast, depletion of cellular protein kinase C (PKC) with phorbol-12-myristate 13-acetate (0.01 μM for 20 hr) increased both BK- and α-T-induced phosphoinositide turnover but inhibited the agonist-induced increase in permeability. A PKC inhibitor, staurosporine (5 μM) likewise inhibited the BK-induced increase in endothelial cell permeability to albumin. We conclude that increases in endothelial permeability induced by the inflammatory mediators, BK and thrombin, can occur independently of PLC activation and increased [Ca2+]i but that a PKC-dependent pathway is required for the permeability response. J. Cell. Physiol. 173:387–396, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
15.
Abstract: Neonatal rat primary astrocyte cultures were swollen by exposure to hypotonic buffer. Using an electrical impedance method for determination of cell volume coupled with on-line measurements of efflux of radioactive ions or amino acids, we have investigated the role of K+ (using 86Rb), taurine, and d -aspartate (an analogue of glutamate) in regulatory volume decrease (RVD). Addition of 1 m M quinine, 10 µ M nimodipine, 100 µ M BAPTA-AM, 10 µ M trifluoperazine, or a calcium-free buffer significantly ( p < 0.0001) inhibited RVD. This was accompanied by inhibition of 86Rb release but an increase in d -[3H]-aspartate release, which was proportional to the degree to which RVD was inhibited. These results support a regulatory role for calcium in RVD and show that inhibition of calcium entry from the extracellular fluid, intracellular calcium sequestration, inhibition of calcium-activated K+ channels, and inhibition of calmodulin all inhibit RVD. Because d -[3H]aspartate efflux profiles increase as RVD is inhibited, it is unlikely that d -aspartate release is a main determinant of RVD. In contrast, [3H]taurine release was increased by 1 m M quinine and inhibited by 10 µ M trifluoperazine. The net release of K+ and taurine is highly correlated with the degree of RVD, implicating a regulatory role for both K+ and taurine release in RVD.  相似文献   
16.
In order to maintain normal functioning of the brain, glutamate homeostasis and extracellular levels of excitotoxic amino acids (EAA) must be tightly controlled. This is accomplished, in large measure, by the astroglial high-affinity Na+-dependent EAA transporters glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). Methylmercury (MeHg) is a potent neurotoxicant. Astrocytes are known targets for MeHg toxicity, representing a site for mercury localization. Mehg is known to cause astrocytic swelling, EAA release, and uptake inhibition in astrocytes, leading to increased extracellular glutamate levels and ensuing neuronal excitotoxicity and degeneration. However, the mechanisms and contribution of specific glutamate transporters to MeHg-induced glutamate dyshomeostasis remain unknown. Accordingly, the present study was carried out to investigate the effects of MeHg on the transport of [d-2, 3-3H]-d-aspartate, a nonmetabolizable glutamate analog in Chinese hamster ovary cells (CHO) transfected with the glutamate transporter subtypes GLAST or GLT-1. Additional studies examined the effects of MeHg on mRNA and protein levels of these transporters. Our results indicate the following (1) MeHg selectively affects glutamate transporter mRNA expression. MeHg treatment (6 h) led to no discernible changes in GLAST mRNA expression; however, GLT-1 mRNA expression significantly (p<0.001) increased following treatments with 5 or 10 μM MeHg. (2) Selective changes in the expression of glutamate transporter protein levels were also noted. GLAST transporter protein levels significantly (p<0.001, both at 5 and 10 μM MeHg) increased and GLT-1 transporter protein levels significantly (p<0.001) decreased followign MeHg exposure (5 μM). (3) MeHg exposure led to significant inhibition (p<0.05) of glutamate uptake by GLAST (both 5 and 10 μM MeHg), whereas GLT-1 transporter activity was significantly (p<0.01) increased following exposure to 5 and 10 μM MeHg. These studies suggest that MeHg contributes to the dysregulation of glutamate homeostasis and that its effects are distinct for GLAST and GLT-1.  相似文献   
17.
18.
Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) are the two ligands of the Tie-2 receptor, a receptor tyrosine kinase that is expressed on the endothelium. A balanced angiopoietin/Tie-2 system is critical for the maintenance of vascular integrity. We investigated the potential role of a disrupted angiopoietin/Tie-2 system on hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Using streptozotocin (STZ) mice subjected to myocardial ischemia, we examined the effects of shifting the Ang-2-to-Ang-1 ratio on myocardial infarction size, apoptosis, bone marrow (BM) cell-endothelial progenitor cell (EPC) differentiation, and angiogenesis. In control mice, myocardial ischemia increased expression of both Ang-2 and Tie-2. In STZ mice, Ang-2 expression was elevated, whereas Tie-2 expression was reduced, and neither was significantly altered by ischemia. Myocardial infarct size and apoptosis were increased in STZ compared with control mice. Using in vivo administration of an adenovirus containing Ang-1 or Ang-2, we found that shifting the Ang-2-to-Ang-1 ratio to favor Ang-1 reduced myocardial apoptosis and infarct size in STZ mice, while shifting the Ang-2-to-Ang-1 ratio to favor Ang-2 resulted in a significant increase in myocardial infarct size and apoptosis in control mice. Myocardial ischemia-stimulated BM cell-EPC differentiation was inhibited and myocardial angiogenesis was reduced in STZ mice. Systemic administration of Ad-Ang-1 restored BM cell-EPC differentiation and increased myocardial VEGF expression and angiogenesis in STZ mice. Our data demonstrate that disturbed angiopoietin/Tie-2 signaling contributes to the hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Restoration of the Ang-2-to-Ang-1 ratio may be a novel therapeutic strategy for the treatment of diabetic myocardial ischemic diseases.  相似文献   
19.
20.
Nutritional aspects of manganese homeostasis   总被引:4,自引:0,他引:4  
Manganese (Mn) is an essential mineral. It is present in virtually all diets at low concentrations. The principal route of intake for Mn is via food consumption, but in occupational cohorts, inhalation exposure may also occur (this subject will not be dealt with in this review). Humans maintain stable tissue levels of Mn. This is achieved via tight homeostatic control of both absorption and excretion. Nevertheless, it is well established that exposure to high oral, parenteral or ambient air concentrations of Mn can result in elevations in tissue Mn levels. Excessive Mn accumulation in the central nervous system (CNS) is an established clinical entity, referred to as manganism. It resembles idiopathic Parkinson's disease (IPD) in its clinical features, resulting in adverse neurological effects both in laboratory animals and humans. This review focuses on an area that to date has received little consideration, namely the potential exposure of parenterally fed neonates to exceedingly high Mn concentrations in parenteral nutrition solutions, potentially increasing their risk for Mn-induced adverse health sequelae. The review will consider (1) the essentiality of Mn; (2) the concentration ranges, means and variation of Mn in various foods and infant formulas; (3) the absorption, distribution, and elimination of Mn after oral exposure and (4) the factors that raise a theoretical concern that neonates receiving total parenteral nutrition (TPN) are exposed to excessive dietary Mn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号