首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   20篇
  2021年   2篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   18篇
  2014年   19篇
  2013年   28篇
  2012年   22篇
  2011年   22篇
  2010年   31篇
  2009年   28篇
  2008年   14篇
  2007年   13篇
  2006年   13篇
  2005年   14篇
  2004年   14篇
  2003年   4篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1991年   3篇
  1989年   2篇
  1988年   7篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   16篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有377条查询结果,搜索用时 265 毫秒
121.

Background

High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the data and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.

Results

Simulations applying this method were performed to identify selection signatures from pooled sequencing FST data, for which allele frequencies were estimated from a pool of individuals. The relative ratio of true to false positives was twice that generated by existing techniques. A comparison of the approach to a previous study that involved pooled sequencing FST data from maize suggested that outlying windows were more clearly separated from their neighbors than when using a standard sliding window approach.

Conclusions

We have developed a novel technique to identify window boundaries for subsequent analysis protocols. When applied to selection studies based on FST data, this method provides a high discovery rate and minimizes false positives. The method is implemented in the R package GenWin, which is publicly available from CRAN.  相似文献   
122.
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   
123.
Zirconyl hematoxylin stains acidic mucins darkly and specifically using a solution of 100 mg hematoxylin, 5 ml ethanol, 5 ml 0.5% sodium iodate, 400 mg zirconyl chloride octahydrate, and 30 ml 25% aqueous glycerol. The stain is especially advantageous for studying goblet cells and Paget cells.  相似文献   
124.
125.

Background

Little is known about the factors associated with CT-quantified emphysema progression in heavy smokers. The objective of this study was to investigate the effect of length of smoking cessation and clinical / demographical factors on the rate of emphysema progression and FEV1-decline in male heavy smokers.

Methods

3,670 male smokers with mean (SD) 40.8 (17.9) packyears underwent chest CT scans and pulmonary function tests at baseline and after 1 and 3 years follow-up. Smoking status (quitted ≥5, ≥1-<5, <1 years or current smoker) was noted. Rate of progression of emphysema and FEV1-decline after follow-up were assessed by analysis of variance adjusting for age, height, baseline pulmonary function and emphysema severity, packyears, years in study and respiratory symptoms. The quitted ≥5 group was used as reference.

Results

Median (Q1-Q3) emphysema severity,<-950 HU, was 8.8 (5.1 – 14.1) and mean (SD) FEV1 was 3.4 (0.73) L or 98.5 (18.5) % of predicted. The group quitted ‘>5 years’ showed significantly lower rates of progression of emphysema compared to current smokers, 1.07% and 1.12% per year, respectively (p<0.001). Current smokers had a yearly FEV1-decline of 69 ml, while subjects quit smoking >5 years had a yearly decline of 57.5 ml (p<0.001).

Conclusion

Quit smoking >5 years significantly slows the rate of emphysema progression and lung function decline.

Trial registration

Registered at http://www.trialregister.nl with trial number ISRCTN63545820.  相似文献   
126.

Background

Increased airway wall thickness (AWT) and parenchymal lung destruction both contribute to airflow limitation. Advances in computed tomography (CT) post-processing imaging allow to quantify these features. The aim of this Dutch population study is to assess the relationships between AWT, lung function, emphysema and respiratory symptoms.

Methods

AWT and emphysema were assessed by low-dose CT in 500 male heavy smokers, randomly selected from a lung cancer screening population. AWT was measured in each lung lobe in cross-sectionally reformatted images with an automated imaging program at locations with an internal diameter of 3.5 mm, and validated in smaller cohorts of patients. The 15th percentile method (Perc15) was used to assess the severity of emphysema. Information about respiratory symptoms and smoking behavior was collected by questionnaires and lung function by spirometry.

Results

Median AWT in airways with an internal diameter of 3.5 mm (AWT3.5) was 0.57 (0.44 - 0.74) mm. Median AWT in subjects without symptoms was 0.52 (0.41-0.66) and in those with dyspnea and/or wheezing 0.65 (0.52-0.81) mm (p<0.001). In the multivariate analysis only AWT3.5 and emphysema independently explained 31.1%and 9.5%of the variance in FEV1%predicted, respectively, after adjustment for smoking behavior.

Conclusions

Post processing standardization of airway wall measurements provides a reliable and useful method to assess airway wall thickness. Increased airway wall thickness contributes more to airflow limitation than emphysema in a smoking male population even after adjustment for smoking behavior.  相似文献   
127.

Background

Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis.

Methods

We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls.

Results

We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1β. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1.

Conclusion

The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.  相似文献   
128.
Gene regulatory networks (GRNs) are rapidly being delineated, but their quality and biological meaning are often questioned. Here, I argue that biological meaning is challenging to define and discuss reasons why GRN validation should be interpreted cautiously.  相似文献   
129.

Background  

The taxonomy and systematic relationships among species of Solanum section Petota are complicated and the section seems overclassified. Many of the presumed (sub)species from South America are very similar and they are able to exchange genetic material. We applied a population genetic approach to evaluate support for subgroups within this material, using AFLP data. Our approach is based on the following assumptions: (i) accessions that may exchange genetic material can be analyzed as if they are part of one gene pool, and (ii) genetic differentiation among species is expected to be higher than within species.  相似文献   
130.

Background

The photorespiratory nitrogen cycle in C3 plants involves an extensive diversion of carbon and nitrogen away from the direct pathways of assimilation. The liberated ammonia is re-assimilated, but up to 25% of the carbon may be released into the atmosphere as CO2. Because of the loss of CO2 and high energy costs, there has been considerable interest in attempts to decrease the flux through the cycle in C3 plants. Transgenic tobacco plants were generated that contained the genes gcl and hyi from E. coli encoding glyoxylate carboligase (EC 4.1.1.47) and hydroxypyruvate isomerase (EC 5.3.1.22) respectively, targeted to the peroxisomes. It was presumed that the two enzymes could work together and compete with the aminotransferases that convert glyoxylate to glycine, thus avoiding ammonia production in the photorespiratory nitrogen cycle.

Results

When grown in ambient air, but not in elevated CO2, the transgenic tobacco lines had a distinctive phenotype of necrotic lesions on the leaves. Three of the six lines chosen for a detailed study contained single copies of the gcl gene, two contained single copies of both the gcl and hyi genes and one line contained multiple copies of both gcl and hyi genes. The gcl protein was detected in the five transgenic lines containing single copies of the gcl gene but hyi protein was not detected in any of the transgenic lines. The content of soluble amino acids including glycine and serine, was generally increased in the transgenic lines growing in air, when compared to the wild type. The content of soluble sugars, glucose, fructose and sucrose in the shoot was decreased in transgenic lines growing in air, consistent with decreased carbon assimilation.

Conclusions

Tobacco plants have been generated that produce bacterial glyoxylate carboligase but not hydroxypyruvate isomerase. The transgenic plants exhibit a stress response when exposed to air, suggesting that some glyoxylate is diverted away from conversion to glycine in a deleterious short-circuit of the photorespiratory nitrogen cycle. This diversion in metabolism gave rise to increased concentrations of amino acids, in particular glutamine and asparagine in the leaves and a decrease of soluble sugars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号