首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   19篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   9篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   9篇
  2013年   4篇
  2012年   13篇
  2011年   11篇
  2010年   3篇
  2009年   5篇
  2008年   11篇
  2007年   6篇
  2006年   7篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1990年   4篇
  1980年   1篇
  1978年   1篇
  1972年   2篇
  1967年   3篇
  1966年   2篇
  1965年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
101.
102.
DNA microarrays for functional plant genomics   总被引:16,自引:0,他引:16  
DNA microarray technology is a key element in today's functional genomics toolbox. The power of the method lies in miniaturization, automation and parallelism permitting large-scale and genome-wide acquisition of quantitative biological information from multiple samples. DNA microarrays are currently fabricated and assayed by two main approaches involving either in situ synthesis of oligonucleotides (`oligonucleotide microarrays') or deposition of pre-synthesized DNA fragments (`cDNA microarrays') on solid surfaces. To date, the main applications of microarrays are in comprehensive, simultaneous gene expression monitoring and in DNA variation analyses for the identification and genotyping of mutations and polymorphisms. Already at a relatively early stage of its application in plant science, microarrays are being utilized to examine a range of biological issues including the circadian clock, plant defence, environmental stress responses, fruit ripening, phytochrome A signalling, seed development and nitrate assimilation. Novel insights are obtained into the molecular mechanisms co-ordinating metabolic pathways, regulatory and signalling networks. Exciting new information will be gained in the years to come not only from genome-wide expression analyses on a few model plant species, but also from extensive studies of less thoroughly studied species on a more limited scale. The value of microarray technology to our understanding of living processes will depend both on the amount of data to be generated and on its clever exploration and integration with other biological knowledge arising from complementary functional genomics tools for `profiling' the genome, proteome, metabolome and phenome.  相似文献   
103.
Studies in anesthetized rats have implicated GABAA receptors in the region of the medullary raphe pallidus (RP) at the level of the facial nucleus in sympathetic nervous regulation of both heart rate and thermoregulatory mechanisms. Therefore, we examined the effect of microinjection of muscimol, a GABAA receptor agonist, and of bicuculline methiodide (BMI), a GABAA receptor antagonist, into the same region of the RP on heart rate, blood pressure, and core body temperature in conscious rats. Microinjection of BMI (40 pmol) into the RP evoked tachycardia that appeared within 1 min and was maximal within 10 min but had little or no effect on blood pressure or body temperature. Microinjection of muscimol (10-80 pmol) at the same sites in the RP evoked marked dose-related decreases in body temperature that developed more slowly (i.e., maximum decreases appearing at 60-75 min after 80 pmol) but had no effect on heart rate or blood pressure. Injection of either agent at sites outside the region had lesser or no effect on the measured parameters. These findings suggest that activity of neurons in the region of the RP plays an important role in the maintenance of body temperature but not heart rate under baseline conditions in conscious rats. Specifically, thermoregulatory neurons in this region appear to be tonically active and contribute to maintenance of body temperature under baseline conditions, while cardiac sympathetic premotor neurons in the RP are not active under these circumstances and thus do not support basal heart rate in conscious rats.  相似文献   
104.
Genes that have been designated the name "MUC" code for proteins comprising mucin domains. These proteins may be involved in barrier and protective functions. The first such gene to be characterized and sequenced is the MUC1 gene. Here we report a novel small protein derived from the MUC1 gene by alternative splicing that does not contain the hallmark of mucin proteins, the mucin domain. This protein termed MUC1/ZD retains the same N-terminal MUC1 sequences as all of the other known MUC1 protein isoforms. The common N-terminal sequences comprise the signal peptide and a subsequent stretch of 30 amino acids. In contrast, the MUC1/ZD C-terminal 43 amino acids are novel and result from a reading frameshift engendered by a splicing event that forms MUC1/ZD. The expression of MUC1/ZD at the protein level in human tissues is demonstrated by Western blotting, immunohistochemistry, immunoprecipitation, and an ELISA. Utilization was made of affinity-purified MUC1/ZD-specific polyclonal antibodies as well as two different monoclonal antibodies that are monospecific for the MUC1/ZD protein. The MUC1/ZD protein is expressed in tissues as an oligomeric complex composed of monomers linked by disulfide bonds contributed by MUC1/ZD cysteine residues. MUC1/ZD protein expression did not parallel that of the tandem-repeat array-containing MUC1 protein. Results presented here demonstrate for the first time the expression of a novel MUC1 protein isoform MUC1/ZD, which is generated by an alternative splicing event that both deletes the tandem-repeat array and leads to a C-terminal reading frameshift.  相似文献   
105.
The myocardial ATP concentration is significantly decreased in failing hearts, which may be related to the progressive loss of the myocardial total adenine nucleotide pool. The total myocardial interstitial purine metabolites (IPM) in the dialysate of interstitial fluid could reflect the tissue ATP depletion. In rats, postmyocardial infarction (MI) left ventricular (LV) remodeling was induced by ligation of the coronary artery. Cardiac microdialysis was employed to assess changes of IPM in response to graded beta-adrenergic stimulation with isoproterenol (Iso) in myocardium of hearts with post-MI LV remodeling (MI group) or hearts with sham operation (sham group). The dialysate samples were analyzed for adenosine, inosine, hypoxanthine, xanthine, and uric acid. LV volume was greater in the MI group (2.2 +/- 0.2 ml/kg) compared with the sham group (1.3 +/- 0.2 ml/kg, P < 0.05). Infarct size was 28 +/- 4%. The baseline dialysate level of uric acid was higher in the MI group (18.9 +/- 3.4 micromol) compared with the sham group (4.6 +/- 0.7 micromol, P < 0.01). During and after Iso infusion, the dialysate levels of adenosine, xanthine, and uric acid were all significantly higher in the MI group. Thus the level of IPM is increased in hearts with postinfarction LV remodeling both at baseline and during Iso infusion. These results suggest that the decreased myocardial ATP level in hearts with post-MI LV remodeling may be caused by the chronic depletion of the total adenine nucleotide pool.  相似文献   
106.
The tertiary fold of the elongation factor, aEF-1, from Methanobacterium thermoautotrophicum was determined in a high-throughput fashion using a minimal set of NMR experiments. NMR secondary structure prediction, deuterium exchange experiments and the analysis of chemical shift perturbations were combined to identify the protein fold as an alpha-beta sandwich typical of many RNA binding proteins including EF-G. Following resolution of the tertiary fold, a high resolution structure of aEF-1 was determined using heteronuclear and homonuclear NMR experiments and a semi-automated NOESY assignment strategy. Analysis of the aEF-1 structure revealed close similarity to its human analogue, eEF-1. In agreement with studies on EF-Ts and human EF-1, a functional mechanism for nucleotide exchange is proposed wherein Phe46 on an exposed loop acts as a lever to eject GDP from the associated elongation factor G-protein, aEF-1. aEF-1 was also found to bind calcium in the groove between helix 2 and strand 4. This novel feature was not observed previously and may serve a structural function related to protein stability or may play a functional role in archaeal protein translation.  相似文献   
107.
The respiratory muscles constitute the respiratory pump, which determines the efficacy of ventilation. Any functional disorder in their performance may cause insufficient ventilation. This study was designed to quantitatively explore the relative contribution of major groups of respiratory muscles to global lung ventilation throughout a range of maneuvers in healthy subjects. A computerized experimental system was developed for simultaneous noninvasive measurement of inspired/expired airflow, mouth pressure and up to 8 channels of EMG surface signals from major respiratory muscles which are located near the skin (e.g., sternomastoid, external intercostal, rectus abdominis and external oblique) during various respiratory maneuvers. Lung volumes values were calculated by integration of airflow data. Hill's muscle model was utilized to calculate the forces generated by the muscles from the acquired EMG data. Analysis of EMG measurements and respiratory muscles forces revealed the following characteristics: (a) muscle activity increased with increased breathing effort, (b) inspiratory muscles contributed to inspiration even at relatively low flow rates, while expiratory muscles are recruited at higher flow rates, (c) the forces generated by the muscle depended on the muscle properties as well as on their EMG performance and (d) the pattern of the muscle's force curves varied between subjects, but were generally consistent for the same subject regardless of breathing effort.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号