首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   23篇
  480篇
  2023年   1篇
  2022年   4篇
  2021年   7篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   10篇
  2015年   13篇
  2014年   28篇
  2013年   26篇
  2012年   40篇
  2011年   34篇
  2010年   18篇
  2009年   23篇
  2008年   39篇
  2007年   24篇
  2006年   31篇
  2005年   33篇
  2004年   38篇
  2003年   21篇
  2002年   26篇
  2001年   1篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   1篇
  1995年   6篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有480条查询结果,搜索用时 0 毫秒
41.
The gene that encodes a thermostable endo-arabinase (called ABN-TS) from Bacillus thermodenitrificans TS-3 was cloned, sequenced, and expressed in the mesophilic B. subtilis. The gene contained an open reading frame consists of 939 bp, which encodes 313 amino acids. The deduced amino acid sequence of the enzyme showed 50, 46, and 36% similarity with endo-arabinase from B. subtilis IFO 3134 (PPase-C), Pseudomonas fluorescens (ArbA), and Aspergillus niger (ABNA), respectively. The hydrophobic and acidic amino acids making up ABN-TS outnumbered those in PPase-C. The gene product expressed in B. subtilis, as the host, had substantially the same characteristics, and was stable up to 70 degrees C, and the reaction was optimal around 70 degrees C, as well as native ABN-TS.  相似文献   
42.
In our previous study, a galactose monosaccharide with C9 spacer was chemically coupled to recombinant human interleukin 1 (rhIL-1) in order to study the effect of glycosylation on its activities, and to develop IL-1 with less deleterious effects. The glycosylated IL-1 exhibited reduced activities in vitro by 10 to 10 000-fold depending upon different aspects of activities addressed. The affinity to type I and II IL-1 receptors were also reduced. In this study we examined a variety of IL-1 activities in vivo, including upregulation of serum levels of IL-6, 1-acid glycoprotein, NOx, corticosterone, downregulation of serum level of glucose, and recovery of peripheral white blood cells (WBCs) from myelosuppression in 5-fluorouracil-treated mice. In contrast to the biological activities in vitro, these activities in vivo were uniformly reduced by only about 10 to 20-fold compared to untreated IL-1.  相似文献   
43.
RhoA activity is transiently inhibited at the initial phase of integrin engagement, when Cdc42- and/or Rac1-mediated membrane spreading and ruffling predominantly occur. Paxillin, an integrin-assembly protein, has four major tyrosine phosphorylation sites, and the phosphorylation of Tyr31 and Tyr118 correlates with cell adhesion and migration. We found that mutation of Tyr31/118 caused enhanced activation of RhoA and premature formation of stress fibers with substantial loss of efficient membrane spreading and ruffling in adhesion and migration of NMuMG cells. These phenotypes were similar to those induced by RhoA(G14V) in parental cells, and could be abolished by expression of RhoA(T19N), Rac1(G12V), or p190RhoGAP in the mutant-expressing cells. Phosphorylated Tyr31/118 was found to bind to two src homology (SH)2 domains of p120RasGAP, with coprecipitation of endogenous paxillin with p120RasGAP. p190RhoGAP is known to be a major intracellular binding partner for the p120RasGAP SH2 domains. We found that Tyr31/118-phosphorylated paxillin competes with p190RhoGAP for binding to p120RasGAP, and provides evidence that p190RhoGAP freed from p120RasGAP efficiently suppresses RhoA activity during cell adhesion. We conclude that Tyr31/118-phosphorylated paxillin serves as a template for the localized suppression of RhoA activity and is necessary for efficient membrane spreading and ruffling in adhesion and migration of NMuMG cells.  相似文献   
44.
Taking advantage of five mouse genomic or cDNA probes [KE5(probe 14), KE4 (probe11), KE3 (probe7), KE2 (probe5), and SET] mapped on the H-2K region in mouse, we have identified and localized homologues of these five genes in the human major histocompatibility complex region (HKE5, HKE4, HKE3, HKE2, and HSET, respectively). Cosmid cloning and pulsed field gel electrophoresis analyses indicated that a human homologous gene, HKE5, is located 10 kilobases (kb) centromeric of the 2(XI) collagen (COL11A2) gene followed by HKE4. HKE3, closely linked to HKE2, is located 170 kb centromeric of HKE4. Furthermore, HSET is located 50 kb centromeric of HKE2. This gene organization outside the DP subregion is completely identical to that of the mouse H-2K region centromeric of I-Pb 3, a mouse homologue of the DPB gene, except the lack of genes corresponding to the H-2K and -K2 genes in human.  相似文献   
45.
46.
The virulence of Yersinia enterocolitica is known to be highly dependent on its virulence plasmid. However, it remains unclear whether the virulence plasmid is engaged also in the induction of cell-mediated immunity that is essential for protective immunity in the host. In this study, we have compared the induction of type 1 helper T cell immunity against Y. enterocolitica using a virulent strain (P+) harboring the pYV plasmid and an avirulent strain (P-) harboring no pYV. Spleen cells from both groups of mice immunized with 1/10 LD50 of P+ strain and those with 1/10 LD50 of P- strain produced a high level of gamma interferon (IFN-gamma) upon stimulation with heat-killed bacteria, and CD4+ T cells were exclusively responsible for IFN-gamma production. When crude Yersinia outer proteins (Yops) were used for antigenic stimulation, IFN-gamma response of immune spleen cells against crude Yops was observed only in mice immunized with P+ strain. Flowcytometric analysis revealed a significant level of increase in IFN-gamma-producing CD8+ T cells as well as the increase in IFN-gamma-producing CD4+ T cells against crude Yops. These results suggest that the virulence plasmid of Y. enterocolitica is involved in the induction of Th1-type of possibly protective T cells in infected mice.  相似文献   
47.
Cdt1 is an essential component for the assembly of a pre-replicative complex. Cdt1 activity is inhibited by geminin, which also participates in neural development and embryonic differentiation in many eukaryotes. Although Cdt1 homologues have been identified in organisms ranging from yeast to human, geminin homologues had not been described for Caenorhabditis elegans and fungi. Here, we identify the C. elegans geminin, GMN-1. Biochemical analysis reveals that GMN-1 associates with C. elegans CDT-1, the Hox protein NOB-1, and the Six protein CEH-32. GMN-1 inhibits not only the interaction between mouse Cdt1 and Mcm6 but also licensing activity in Xenopus egg extracts. RNA interference-mediated reduction of GMN-1 is associated with enlarged germ nuclei with aberrant nucleolar morphology, severely impaired gametogenesis, and chromosome bridging in intestinal cells. We conclude that the Cdt1-geminin system is conserved throughout metazoans and that geminin has evolved in these taxa to regulate proliferation and differentiation by directly interacting with Cdt1 and homeobox proteins.  相似文献   
48.
Megalin-mediated endocytosis of cystatin C in proximal tubule cells   总被引:1,自引:0,他引:1  
Serum levels of cystatin C, an endogenous cysteine proteinase inhibitor, are often used as an indicator of glomerular filtration rate. Although it is known that cystatin C is filtered by glomeruli and metabolized in proximal tubule cells (PTC), the precise molecular mechanism underlying this process is undetermined. Using quartz-crystal microbalance analyses, we demonstrate that cystatin C binds directly to megalin, an endocytic receptor in PTC, in a Ca(+)-dependent manner. We also find that cystatin C is endocytosed specifically via megalin in rat yolk sac epithelium-derived L2 cells which share a variety of characteristics with PTC. Finally, in vivo studies using kidney-specific megalin knockout mice provide evidence that megalin mediates proximal tubular uptake of cystatin C. We conclude that megalin is an endocytic receptor of cystatin C in PTC.  相似文献   
49.
Loss of ALS2/alsin function accounts for several recessive motor neuron diseases. ALS2 is a Rab5 activator and its endosomal localization is regulated by Rac1 via macropinocytosis. Here, we show that the pathogenic missense ALS2 mutants fail to be localized to Rac1-induced macropinosomes as well as endosomes, which leads to loss of the ALS2 function as a Rab5 activator on endosomes. Further, these mutants lose the competence to enhance the formation of amphisomes, the hybrid-organelle formed upon fusion between autophagosomes and endosomes. Thus, Rac1-induced relocalization of ALS2 might be crucial to exert the ALS2 function associated with the autophagy-endolysosomal degradative pathway.  相似文献   
50.
Oxysterol‐binding protein (OSBP) localizes to endoplasmic reticulum (ER)‐Golgi contact sites where it transports cholesterol and phosphatidylinositol 4‐phosphate (PI‐4P), and activates lipid transport and biosynthetic activities. The PI‐4P phosphatase Sac1 cycles between the ER and Golgi apparatus where it potentially regulates OSBP activity. Here we examined whether the ER‐Golgi distribution of endogenous or ectopically expressed Sac1 influences OSBP activity. OSBP and Sac1 co‐localized at apparent ER‐Golgi contact sites in response to 25‐hydroxycholesterol (25OH), cholesterol depletion and p38 MAPK inhibitors. A Sac1 mutant that is unable to exit the ER did not localize with OSBP, suggesting that sterol perturbations cause Sac1 transport to the Golgi apparatus. Ectopic expression of Sac1 in the ER or Golgi apparatus, or Sac1 silencing, did not affect OSBP localization to ER‐Golgi contact sites, OSBP‐dependent activation of sphingomyelin synthesis, or cholesterol esterification in the ER. p38 MAPK inhibition and retention of Sac1 in the Golgi apparatus also caused OSBP phosphorylation and OSBP‐dependent activation of sphingomyelin synthesis at ER‐Golgi contacts. These results demonstrate that Sac1 expression in either the ER or Golgi apparatus has a minimal impact on the PI‐4P that regulates OSBP activity or recruitment to contact sites.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号